12 research outputs found
Stochastic evolution equations driven by Liouville fractional Brownian motion
Let H be a Hilbert space and E a Banach space. We set up a theory of
stochastic integration of L(H,E)-valued functions with respect to H-cylindrical
Liouville fractional Brownian motions (fBm) with arbitrary Hurst parameter in
the interval (0,1). For Hurst parameters in (0,1/2) we show that a function
F:(0,T)\to L(H,E) is stochastically integrable with respect to an H-cylindrical
Liouville fBm if and only if it is stochastically integrable with respect to an
H-cylindrical fBm with the same Hurst parameter. As an application we show that
second-order parabolic SPDEs on bounded domains in \mathbb{R}^d, driven by
space-time noise which is white in space and Liouville fractional in time with
Hurst parameter in (d/4,1) admit mild solution which are H\"older continuous
both and space.Comment: To appear in Czech. Math.