674 research outputs found

    High-precision frequency measurements: indispensable tools at the core of the molecular-level analysis of complex systems

    Get PDF
    This perspective article provides an assessment of the state-of-the-art in the molecular-resolution analysis of complex organic materials. These materials can be divided into biomolecules in complex mixtures (which are amenable to successful separation into unambiguously defined molecular fractions) and complex nonrepetitive materials (which cannot be purified in the conventional sense because they are even more intricate). Molecular-level analyses of these complex systems critically depend on the integrated use of high-performance separation, high-resolution organic structural spectroscopy and mathematical data treatment. At present, only high-precision frequency-derived data exhibit sufficient resolution to overcome the otherwise common and detrimental effects of intrinsic averaging, which deteriorate spectral resolution to the degree of bulk-level rather than molecular-resolution analysis. High-precision frequency measurements are integral to the two most influential organic structural spectroscopic methods for the investigation of complex materials—NMR spectroscopy (which provides unsurpassed detail on close-range molecular order) and FTICR mass spectrometry (which provides unrivalled resolution)—and they can be translated into isotope-specific molecular-resolution data of unprecedented significance and richness. The quality of this standalone de novo molecular-level resolution data is of unparalleled mechanistic relevance and is sufficient to fundamentally advance our understanding of the structures and functions of complex biomolecular mixtures and nonrepetitive complex materials, such as natural organic matter (NOM), aerosols, and soil, plant and microbial extracts, all of which are currently poorly amenable to meaningful target analysis. The discrete analytical volumetric pixel space that is presently available to describe complex systems (defined by NMR, FT mass spectrometry and separation technologies) is in the range of 108–14 voxels, and is therefore capable of providing the necessary detail for a meaningful molecular-level analysis of very complex mixtures. Nonrepetitive complex materials exhibit mass spectral signatures in which the signal intensity often follows the number of chemically feasible isomers. This suggests that even the most strongly resolved FTICR mass spectra of complex materials represent simplified (e.g. isomer-filtered) projections of structural space

    The MINERν\nuA Data Acquisition System and Infrastructure

    Full text link
    MINERν\nuA (Main INjector ExpeRiment ν\nu-A) is a new few-GeV neutrino cross section experiment that began taking data in the FNAL NuMI (Fermi National Accelerator Laboratory Neutrinos at the Main Injector) beam-line in March of 2010. MINERν\nuA employs a fine-grained scintillator detector capable of complete kinematic characterization of neutrino interactions. This paper describes the MINERν\nuA data acquisition system (DAQ) including the read-out electronics, software, and computing architecture.Comment: 34 pages, 16 figure

    Electrochemical Formation of Germanene: pH 4.5

    Get PDF
    Germanene is a single layer allotrope of Ge, with a honeycomb structure similar to graphene. This report concerns the electrochemical formation of germanene in a pH 4.5 solution. The studies were performed using in situ Electrochemical Scanning Tunneling Microscopy (EC-STM), voltammetry, coulometry, surface X-ray diffraction (SXRD) and Raman spectroscopy to study germanene electrodeposition on Au(111) terraces. The deposition of Ge is kinetically slow and stops after 2–3 monolayers. EC-STM revealed a honeycomb (HC) structure with a rhombic unit cell, 0.44 ± 0.02 nm on a side, very close to that predicted for germanene in the literature. Ideally the HC structure is a continuous sheet, with six Ge atoms around each hole. However, only small domains, surrounded by defects, of this structure were observed in this study. The small coherence length and multiple rotations domains made direct observation with surface X-ray diffraction difficult. Raman spectroscopy was used to investigate the multi-layer Ge deposits. A peak near 290 cm^(−1), predicted to correspond to germanene, was observed on one particular area of the sample, while the rest resembled amorphous germanium. Electrochemical studies of germanene showed limited stability when exposed to oxygen

    MINERvA neutrino detector response measured with test beam data

    Get PDF
    The MINERvA collaboration operated a scaled-down replica of the solid scintillator tracking and sampling calorimeter regions of the MINERvA detector in a hadron test beam at the Fermilab Test Beam Facility. This article reports measurements with samples of protons, pions, and electrons from 0.35 to 2.0 GeV/c momentum. The calorimetric response to protons, pions, and electrons are obtained from these data. A measurement of the parameter in Birks' law and an estimate of the tracking efficiency are extracted from the proton sample. Overall the data are well described by a Geant4-based Monte Carlo simulation of the detector and particle interactions with agreements better than 4%, though some features of the data are not precisely modeled. These measurements are used to tune the MINERvA detector simulation and evaluate systematic uncertainties in support of the MINERvA neutrino cross section measurement program.Comment: as accepted by NIM

    Single neutral pion production by charged-current νˉμ\bar{\nu}_\mu interactions on hydrocarbon at ⟨Eν⟩=\langle E_\nu \rangle = 3.6 GeV

    Get PDF
    Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) is studied using the \minerva detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for νˉe\bar{\nu}_e appearance oscillation experiments. The differential cross sections for π0\pi^0 momentum and production angle, for events with a single observed π0\pi^0 and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the π0\pi^0 kinematics for this process.Comment: 6 pages, 5 figures, submitted to Physics Letters

    Novel Proteins Required for Meiotic Silencing by Unpaired DNA and siRNA Generation in Neurospora crassa

    Get PDF
    During meiosis in the filamentous fungus Neurospora crassa, unpaired genes are identified and silenced by a process known as meiotic silencing by unpaired DNA (MSUD). Previous work has uncovered six proteins required for MSUD, all of which are also essential for meiotic progression. Additionally, they all localize in the perinuclear region, suggesting that it is a center of MSUD activity. Nevertheless, at least a subset of MSUD proteins must be present inside the nucleus, as unpaired DNA recognition undoubtedly takes place there. In this study, we identified and characterized two new proteins required for MSUD, namely SAD-4 and SAD-5. Both are previously uncharacterized proteins specific to Ascomycetes, with SAD-4 having a range that spans several fungal classes and SAD-5 seemingly restricted to a single order. Both genes appear to be predominantly expressed in the sexual phase, as molecular study combined with analysis of publicly available mRNA-seq datasets failed to detect significant expression of them in the vegetative tissue. SAD-4, like all known MSUD proteins, localizes in the perinuclear region of the meiotic cell. SAD-5, on the other hand, is found in the nucleus (as the first of its kind). Both proteins are unique compared to previously identified MSUD proteins in that neither is required for sexual sporulation. This homozygous-fertile phenotype uncouples MSUD from sexual development and allows us to demonstrate that both SAD-4 and SAD-5 are important for the production of masiRNAs, which are the small RNA molecules associated with meiotic silencing
    • …
    corecore