187 research outputs found

    Semirelativistic Hamiltonians and the auxiliary field method

    Full text link
    Approximate analytical closed energy formulas for semirelativistic Hamiltonians of the form σp2+m2+V(r)\sigma\sqrt{\bm p^{2}+m^2}+V(r) are obtained within the framework of the auxiliary field method. This method, which is equivalent to the envelope theory, has been recently proposed as a powerful tool to get approximate analytical solutions of the Schr\"odinger equation. Various shapes for the potential V(r)V(r) are investigated: power-law, funnel, square root, and Yukawa. A comparison with the exact results is discussed in detail

    Extensions of the auxiliary field method to solve Schr\"{o}dinger equations

    Full text link
    It has recently been shown that the auxiliary field method is an interesting tool to compute approximate analytical solutions of the Schr\"{o}dinger equation. This technique can generate the spectrum associated with an arbitrary potential V(r)V(r) starting from the analytically known spectrum of a particular potential P(r)P(r). In the present work, general important properties of the auxiliary field method are proved, such as scaling laws and independence of the results on the choice of P(r)P(r). The method is extended in order to find accurate analytical energy formulae for radial potentials of the form aP(r)+V(r)a P(r)+V(r), and several explicit examples are studied. Connections existing between the perturbation theory and the auxiliary field method are also discussed

    Short-range potentials from QCD at order g2g^2

    Full text link
    We systematically compute the effective short-range potentials arising from second order QCD-diagrams related to bound states of quarks, antiquarks, and gluons. Our formalism relies on the assumption that the exchanged gluons are massless, while the constituent gluons as well as the lightest quarks acquire a nonvanishing constituent mass because of confinement. The potentials we obtain include the first relativistic corrections, thus spin-spin terms, spin-orbit terms, etc. Such effective potentials are expected to be relevant for the building of accurate potential models describing usual hadrons as well as exotic ones like glueballs and qqˉgq\bar q g hybrids. In particular, we compute for the first time an effective quark-gluon potential, and show the existence of a quadrupolar interaction term in this case. We also discuss the influence of a possible nonzero mass for the exchanged gluons.Comment: 33 pages, 4 tables and 12 figures ; typos correcte

    Auxiliary field method and analytical solutions of the Schr\"{o}dinger equation with exponential potentials

    Full text link
    The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies and eigenvectors of the Schr\"{o}dinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schr\"{o}dinger equation with exponential potentials of the form αrλexp(βr)-\alpha r^\lambda \exp(-\beta r) can also be analytically solved by using the auxiliary field method. Formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn on the Yukawa potential and the pure exponential one

    Auxiliary fields as a tool for computing analytical solutions of the Schr\"{o}dinger equation

    Full text link
    We propose a new method to obtain approximate solutions for the Schr\"{o}dinger equation with an arbitrary potential that possesses bound states. This method, relying on the auxiliary field technique, allows in many cases to find analytical solutions. It offers a convenient way to study the qualitative features of the energy spectrum of bound states in any potential. In particular, we illustrate our method by solving the case of central potentials with power-law form and with logarithmic form. For these types of potentials, we propose very accurate analytical energy formulae which improve a lot the corresponding formulae that can be found in literature.Comment: 2 figure

    Glueballs, gluon condensate, and pure glue QCD below T_c

    Full text link
    A quasiparticle description of pure glue QCD thermodynamics at T<T_c is proposed and compared to recent lattice data. Given that a gas of glueballs with constant mass cannot quantitatively reproduce the early stages of the deconfinement phase transition, the problem is to identify a relevant mechanism leading to the observed sudden increase of the pressure, trace anomaly, etc. It is shown that the strong decrease of the gluon condensate near T_c combined with the increasing thermal width of the lightest glueballs might be the trigger of the phase transition.Comment: 5 pages, 5 figures; analysis refined in v2, explanations added; v3 to appear in EPJ

    What makes SMEs more likely to collaborate? Analysing the role of regional policy

    Get PDF
    The last twenty years have witnessed the diffusion of regional innovation policies supporting networks of innovators. The underlying aim of these policies is to encourage firms, particularly SMEs, to undertake collaborations with organisations possessing complementary knowledge. Focusing on a set of SMEs that have participated, over time, in several innovation networks funded by the same regional government, the paper investigates how their relationships have evolved with respect to the following aspects: (i) reiteration of pre-existing relationships as opposed to experimentation of new relationships; (ii) collaboration with organisations possessing complementary rather than similar knowledge and competencies; (iii) creation of local relationships rather than experimentation of extra-local collaborations; (iv) reliance upon intermediaries to connect with other organisations. Our findings reveal that the involvement in these policy-supported networks changed the firms’ relational patterns, leading them to collaborate with a wider variety of agents than those with whom they were linked before the policies. Sectoral heterogeneity had a negative effect on the probability to collaborate, while co-localisation increased the likelihood to collaborate. Mutual involvement with intermediaries also had a positive effect. However, in the case of firm-to-university relationships only specialized intermediaries were likely to perform a positive role and, therefore, encourage networking

    Standard care informed by the result of a placental growth factor blood test versus standard care alone in women with reduced fetal movement at or after 36+0 weeks’ gestation: a pilot randomised controlled trial

    Get PDF
    BackgroundBiomarkers of placental function can potentially aid the diagnosis and prediction of pregnancy complications. This randomised controlled pilot trial assessed whether for women with reduced fetal movement (RFM), intervention directed by the measurement of a placental biomarker in addition to standard care was feasible and improved pregnancy outcome compared with standard care alone.MethodsWomen aged 16–50 years presenting at eight UK maternity units with RFM between 36+0 and 41+0 weeks’ gestation with a viable singleton pregnancy and no indication for immediate delivery were eligible. Participants were randomised 1:1 in an unblinded manner to standard care and a biomarker blood test result revealed and acted on (intervention arm) or standard care where the biomarker result was not available (control arm). The objectives were to determine the feasibility of a main trial by recruiting 175–225 participants over 9 months and to provide proof of concept that informing care by measurement of placental biomarkers may improve outcome. Feasibility was assessed via the number of potentially eligible women, number recruited, reasons for non-recruitment and compliance. Proof of concept outcomes included the rates of the induction of labour and caesarean birth, and a composite adverse pregnancy outcome.ResultsOverall, 2917 women presented with RFM ≥ 36 weeks, 352 were approached to participate and 216 (61%) were randomised (intervention n = 109, control n = 107). The main reason for not approaching women was resource/staff issues (n = 1510). Ninety-seven women declined the trial, mainly due to not liking blood tests (n = 24) or not wanting to be in a trial (n = 21). Compliance with the trial interventions was 100% in both arms. Labour was induced in 97 (45%) participants (intervention n = 49, control n = 48), while 17 (9%) had planned caesarean sections (intervention n = 9, control n = 8). Overall, 9 (8%) babies in the intervention arm had the composite adverse pregnancy outcome versus 4 (4%) in the control arm.ConclusionsA main trial using a placental biomarker in combination with delivery, as indicated by the biomarker, in women with RFM is feasible. The frequency of adverse outcomes in this population is low, hence, a large sample size would be required along with consideration of the most appropriate outcome measures

    A minimal quasiparticle approach for the QGP and its large-NcN_c limits

    Full text link
    We propose a quasiparticle approach allowing to compute the equation of state of a generic gauge theory with gauge group SU(NcN_c) and quarks in an arbitrary representation. Our formalism relies on the thermal quasiparticle masses (quarks and gluons) computed from Hard-Thermal-Loop techniques, in which the standard two-loop running coupling constant is used. Our model is minimal in the sense that we do not allow any extra ansatz concerning the temperature-dependence of the running coupling. We first show that it is able to reproduce the most recent equations of state computed on the lattice for temperatures higher than 2 TcT_c. In this range of temperatures, an ideal gas framework is indeed expected to be relevant. Then we study the accuracy of various inequivalent large-NcN_c limits concerning the description of the QCD results, as well as the equivalence between the QCDAS_{AS} limit and the N=1{\cal N}=1 SUSY Yang-Mills theory. Finally, we estimate the dissociation temperature of the Υ\Upsilon-meson and comment on the estimations' stability regarding the different considered large-NcN_c limits.Comment: 19 pages, 6 figure

    Coordinated optimization of visual cortical maps (II) Numerical studies

    Get PDF
    It is an attractive hypothesis that the spatial structure of visual cortical architecture can be explained by the coordinated optimization of multiple visual cortical maps representing orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we defined a class of analytically tractable coordinated optimization models and solved representative examples in which a spatially complex organization of the orientation preference map is induced by inter-map interactions. We found that attractor solutions near symmetry breaking threshold predict a highly ordered map layout and require a substantial OD bias for OP pinwheel stabilization. Here we examine in numerical simulations whether such models exhibit biologically more realistic spatially irregular solutions at a finite distance from threshold and when transients towards attractor states are considered. We also examine whether model behavior qualitatively changes when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. Our numerical results support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the spatially irregular architecture of the visual cortex. We discuss several alternative scenarios and additional factors that may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1102.335
    corecore