298 research outputs found
Gut microbiomeâmicronutrient interaction: The key to controlling the bioavailability of minerals and vitamins?
Micronutrients, namely, vitamins and minerals, are necessary for the proper functioning of the human body, and their deficiencies can have dramatic short- and long-term health consequences. Among the underlying causes, certainly a reduced dietary intake and/or poor absorption in the gastrointestinal tract play a key role in decreasing their bioavailability. Recent evidence from clinical and in vivo studies suggests an increasingly important contribution from the gut microbiome. Commensal microorganisms can in fact regulate the levels of micronutrients, both by intervening in the biosynthetic processes and by modulating their absorption. This short narrative review addresses the pivotal role of the gut microbiome in influencing the bioavailability of vitamins (such as A, B, C, D, E, and K) and minerals (calcium, iron, zinc, magnesium, and phosphorous), as well as the impact of these micronutrients on microbiome composition and functionality. Personalized microbiome-based intervention strategies could therefore constitute an innovative tool to counteract micronutrient deficiencies by modulating the gut microbiome toward an eubiotic configuration capable of satisfying the needs of our organism, while promoting general health
Gut microbiota in relation to frailty and clinical outcomes
Purpose of reviewThe gut microbiota is involved in several aspects of host health and disease, but its role is far from fully understood. This review aims to unveil the role of our microbial community in relation to frailty and clinical outcomes.Recent findingsAgeing, that is the continuous process of physiological changes that begin in early adulthood, is mainly driven by interactions between biotic and environmental factors, also involving the gut microbiota. Indeed, our gut microbial counterpart undergoes considerable compositional and functional changes across the lifespan, and ageing-related processes may be responsible for - and due to - its alterations during elderhood. In particular, a dysbiotic gut microbiota in the elderly population has been associated with the development and progression of several age-related disorders.SummaryHere, we first provide an overview of the lifespan trajectory of the gut microbiota in both health and disease. Then, we specifically focus on the relationship between gut microbiota and frailty syndrome, that is one of the major age-related burdens. Finally, examples of microbiome-based precision interventions, mainly dietary, prebiotic and probiotic ones, are discussed as tools to ameliorate the symptoms of frailty and its overlapping conditions (e.g. sarcopenia), with the ultimate goal of actually contributing to healthy ageing and hopefully promoting longevity
Human Milk's Hidden Gift: Implications of the Milk Microbiome for Preterm Infants' Health
Breastfeeding is considered the gold standard for infants' nutrition, as mother's own milk (MOM) provides nutritional and bioactive factors functional to optimal development. Early life microbiome is one of the main contributors to short and long-term infant health status, with the gut microbiota (GM) being the most studied ecosystem. Some human milk (HM) bioactive factors, such as HM prebiotic carbohydrates that select for beneficial bacteria, and the specific human milk microbiota (HMM) are emerging as early mediators in the relationship between the development of GM in early life and clinical outcomes. The beneficial role of HM becomes even more crucial for preterm infants, who are exposed to significant risks of severe infection in early life as well as to adverse short and long-term outcomes. When MOM is unavailable or insufficient, donor human milk (DHM) constitutes the optimal nutritional choice. However, little is known about the specific effect of DHM on preterm GM and its potential functional implication on HMM. The purpose of this narrative review is to summarize recent findings on HMM origin and composition and discuss the role of HMM on infant health and development, with a specific focus on preterm infants
HumanMycobiomeScan: A new bioinformatics tool for the characterization of the fungal fraction in metagenomic samples
Background: Modern metagenomic analysis of complex microbial communities produces large amounts of sequence data containing information on the microbiome in terms of bacterial, archaeal, viral and eukaryotic composition. The bioinformatics tools available are mainly devoted to profiling the bacterial and viral fractions and only a few software packages consider fungi. As the human fungal microbiome (human mycobiome) can play an important role in the onset and progression of diseases, a comprehensive description of host-microbiota interactions cannot ignore this component. Results: HumanMycobiomeScan is a bioinformatics tool for the taxonomic profiling of the mycobiome directly from raw data of next-generation sequencing. The tool uses hierarchical databases of fungi in order to unambiguously assign reads to fungal species more accurately and > 10,000 times faster than other comparable approaches. HumanMycobiomeScan was validated using in silico generated synthetic communities and then applied to metagenomic data, to characterize the intestinal fungal components in subjects adhering to different subsistence strategies. Conclusions: Although blind to unknown species, HumanMycobiomeScan allows the characterization of the fungal fraction of complex microbial ecosystems with good performance in terms of sample denoising from reads belonging to other microorganisms. HumanMycobiomeScan is most appropriate for well-studied microbiomes, for which most of the fungal species have been fully sequenced. This released version is functionally implemented to work with human-associated microbiota samples. In combination with other microbial profiling tools, HumanMycobiomeScan is a frugal and efficient tool for comprehensive characterization of microbial ecosystems through shotgun metagenomics sequencing
G2S: A New Deep Learning Tool for Predicting Stool Microbiome Structure From Oral Microbiome Data
Deep learning methodologies have revolutionized prediction in many fields and show the potential to do the same in microbial metagenomics. However, deep learning is still unexplored in the field of microbiology, with only a few software designed to work with microbiome data. Within the meta-community theory, we foresee new perspectives for the development and application of deep learning algorithms in the field of the human microbiome. In this context, we developed G2S, a bioinformatic tool for taxonomic prediction of the human fecal microbiome directly from the oral microbiome data of the same individual. The tool uses a deep convolutional neural network trained on paired oral and fecal samples from populations across the globe, which allows inferring the stool microbiome at the family level more accurately than other available approaches. The tool can be used in retrospective studies, where fecal sampling was not performed, and especially in the field of paleomicrobiology, as a unique opportunity to recover data related to ancient gut microbiome configurations. G2S was validated on already characterized oral and fecal sample pairs, and then applied to ancient microbiome data from dental calculi, to derive putative intestinal components in medieval subjects
The Relationship between Gut Microbiota and Respiratory Tract Infections in Childhood: A Narrative Review
Respiratory tract infections (RTIs) are common in childhood and represent one of the main causes of hospitalization in this population. In recent years, many studies have described the association between gut microbiota (GM) composition and RTIs in animal models. In particular, the âinter-talkâ between GM and the immune system has recently been unveiled. However, the role of GM in human, and especially infantile, RTIs has not yet been fully established. In this narrative review we provide an up-to-date overview of the physiological pathways that explain how the GM shapes the immune system, potentially influencing the response to common childhood respiratory viral infections and compare studies analysing the relationship between GM composition and RTIs in children. Most studies provide evidence of GM dysbiosis, but it is not yet possible to identify a distinct bacterial signature associated with RTI predisposition. A better understanding of GM involvement in RTIs could lead to innovative integrated GM-based strategies for the prevention and treatment of RTIs in the paediatric population
Impact of lignans in oilseed mix on gut microbiome composition and enterolignan production in younger healthy and premenopausal women: An in vitro pilot study
Background: Dietary lignans belong to the group of phytoestrogens together with coumestans, stilbenes and isoflavones, and themselves do not exhibit oestrogen-like properties. Nonetheless, the gut microbiota converts them into enterolignans, which show chemical similarity to the human oestrogen molecule. One of the richest dietary sources of lignans are oilseeds, including flaxseed. The aim of this pilot study was to determine the concentration of the main dietary lignans in an oilseed mix, and explore the gut microbiota-dependent production of enterolignans for oestrogen substitution in young and premenopausal women. The oilseed mix was fermented in a pH-controlled batch culture system inoculated with women's faecal samples. The lignan content and enterolignan production were measured by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), and the faecal-derived microbial communities were profiled by 16S rRNA gene-based next-generation sequencing. Results: In vitro batch culture fermentation of faecal samples inoculated with oilseed mix for 24 h resulted in a substantial increase in enterolactone production in younger women and an increase in enterodiol in the premenopausal group. As for the gut microbiota, different baseline profiles were observed as well as different temporal dynamics, mainly related to Clostridiaceae, and Klebsiella and Collinsella spp. Conclusions: Despite the small sample size, our pilot study revealed that lignan-rich oilseeds could strongly influence the faecal microbiota of both younger and premenopausal females, leading to a different enterolignan profile being produced. Further studies in larger cohorts are needed to evaluate the long-term effects of lignan-rich diets on the gut microbiota and find out how enterolactone-producing bacterial species could be increased. Diets rich in lignans could potentially serve as a safe supplement of oestrogen analogues to meet the cellular needs of endogenous oestrogen and deliver numerous health benefits, provided that the premenopausal woman microbiota is capable of converting dietary precursors into enterolignans.[Figure not available: See fulltext.
Gut Microbiota Dysbiosis in Childhood Vasculitis: A Perspective Comparative Pilot Study
Kawasaki disease (KD) and HenochâSchönlein purpura (HSP) are the most frequent vasculitis in childhood. For both, a multifactorial mechanism has been hypothesised, with an abnormal immune response in genetically predisposed children. Gut microbiota (GM) alterations might trigger the hyperimmune reaction. Our aim was to explore the GM in KD and compare it with the GM of HSP and febrile children. Children diagnosed with KD, HSP and non-KD febrile illness (F) were enrolled. GM was profiled by 16S rRNA gene sequencing and compared with the profiles of healthy children from previous studies. We enrolled 13 KD, 10 HSP and 12 F children. Their GM significantly differed from controls, with an overall reduction in the relative abundance of beneficial taxa belonging to the Ruminococcaceae and Lachnospiraceae families. Potential KD and HSP signatures were identified, including smaller amounts of Dialister in the former, and Clostridium and Akkermansia in the latter. Notably, the GM structures of KD, HSP and F patients stratified by abdominal involvement, with more severe dysbiosis in those suffering from intestinal symptoms. This is the first study analysing GM in a mostly Caucasian cohort of KD and HSP children. Our data could open up new opportunities for childhood vasculitis treatment
Gut microbiome in pediatric acute leukemia: From predisposition to cure
The gut microbiome (GM) has emerged as a key factor in the genesis and progression of many diseases. The intestinal bacterial composition also influences treatment-related side effects and even the efficacy of oncological therapies. Acute leukemia (AL) is the most common cancer among children and the most frequent cause of cancer-related death during childhood. Outcomes have improved considerably over the past 4 decades, with the current long-term survival for acute lymphoblastic leukemia being âŒ90%. However, several acute toxicities and long-term sequelae are associated with the multimodal therapy protocols applied in these patients. Specific GM configurations could contribute to the multistep developmental hypothesis for leukemogenesis. Moreover, GM alterations occur during the AL therapeutic course and are associated with treatment-related complications, especially during hematopoietic stem cell transplantation. The GM perturbation could last even after the removal of microbiome-modifying factors, like antibiotics, chemotherapeutic drugs, or alloimmune reactions, contributing to several health-related issues in AL survivors. The purpose of this article is to provide a comprehensive review of the chronological changes of GM in children with AL, from predisposition to cure. The underpinning biological processes and the potential interventions to modulate the GM toward a potentially health-promoting configuration are also highlighted
Impact of diet and nutraceutical supplementation on inflammation in elderly people. Results from the RISTOMED study, an open-label randomized control trial.
BACKGROUND & AIMS: Eating habits may influence the life span and the quality of ageing process by modulating inflammation. The RISTOMED project was developed to provide a personalized and balanced diet, enriched with or without nutraceutical compounds, to decrease and prevent inflammageing, oxidative stress and gut microbiota alteration in healthy elderly people. This paper focused on the effect on inflammation and metabolism markers after 56 days of RISTOMED diet alone or supplementation with three nutraceutical compounds.
METHODS:A cohort of 125 healthy elderly subjects was recruited and randomized into 4 arms (Arm A, RISTOMED diet; Arm B, RISTOMED diet plus VSL#3 probiotic blend; Arm C, RISTOMED diet plus AISA d-Limonene; Arm D, RISTOMED diet plus Argan oil). Inflammatory and metabolism parameters as well as the ratio between Clostridium cluster IV and Bifidobacteria (CL/B) were collected before and after 56 days of dietary intervention, and their evolution compared among the arms. Moreover, participants were subdivided according to their baseline inflammatory parameters (erythrocytes sedimentation rate (ESR), C-Reactive Protein, fibrinogen, Tumor Necrosis Factor-alfa (TNF-α), and Interleukin 6) in two clusters with low or medium-high level of inflammation. The evolution of the measured parameters was then examined separately in each cluster.
RESULTS:Overall, RISTOMED diet alone or with each nutraceutical supplementation significantly decreased ESR. RISTOMED diet supplemented with d-Limonene resulted in a decrease in fibrinogen, glucose, insulin levels and HOMA-IR. The most beneficial effects were observed in subjects with a medium-high inflammatory status who received RISTOMED diet with AISA d-Limonene supplementation. Moreover, RISTOMED diet associated with VSL#3 probiotic blend induced a decrease in the CL/B ratio.
CONCLUSIONS:Overall, this study emphasizes the beneficial anti-inflammageing effect of RISTOMED diet supplemented with nutraceuticals to control the inflammatory status of elderly individuals
- âŠ