2,201 research outputs found

    Conservation laws for invariant functionals containing compositions

    Full text link
    The study of problems of the calculus of variations with compositions is a quite recent subject with origin in dynamical systems governed by chaotic maps. Available results are reduced to a generalized Euler-Lagrange equation that contains a new term involving inverse images of the minimizing trajectories. In this work we prove a generalization of the necessary optimality condition of DuBois-Reymond for variational problems with compositions. With the help of the new obtained condition, a Noether-type theorem is proved. An application of our main result is given to a problem appearing in the chaotic setting when one consider maps that are ergodic.Comment: Accepted for an oral presentation at the 7th IFAC Symposium on Nonlinear Control Systems (NOLCOS 2007), to be held in Pretoria, South Africa, 22-24 August, 200

    Solutions of differential equations in a Bernstein polynomial basis

    Get PDF
    AbstractAn algorithm for approximating solutions to differential equations in a modified new Bernstein polynomial basis is introduced. The algorithm expands the desired solution in terms of a set of continuous polynomials over a closed interval and then makes use of the Galerkin method to determine the expansion coefficients to construct a solution. Matrix formulation is used throughout the entire procedure. However, accuracy and efficiency are dependent on the size of the set of Bernstein polynomials and the procedure is much simpler compared to the piecewise B spline method for solving differential equations. A recursive definition of the Bernstein polynomials and their derivatives are also presented. The current procedure is implemented to solve three linear equations and one nonlinear equation, and excellent agreement is found between the exact and approximate solutions. In addition, the algorithm improves the accuracy and efficiency of the traditional methods for solving differential equations that rely on much more complicated numerical techniques. This procedure has great potential to be implemented in more complex systems where there are no exact solutions available except approximations

    Group Theory and Quasiprobability Integrals of Wigner Functions

    Full text link
    The integral of the Wigner function of a quantum mechanical system over a region or its boundary in the classical phase plane, is called a quasiprobability integral. Unlike a true probability integral, its value may lie outside the interval [0,1]. It is characterized by a corresponding selfadjoint operator, to be called a region or contour operator as appropriate, which is determined by the characteristic function of that region or contour. The spectral problem is studied for commuting families of region and contour operators associated with concentric disks and circles of given radius a. Their respective eigenvalues are determined as functions of a, in terms of the Gauss-Laguerre polynomials. These polynomials provide a basis of vectors in Hilbert space carrying the positive discrete series representations of the algebra su(1,1)or so(2,1). The explicit relation between the spectra of operators associated with disks and circles with proportional radii, is given in terms of the dicrete variable Meixner polynomials.Comment: 11 pages, latex fil

    Atmospheric and Oceanographic Information Processing System (AOIPS) system description

    Get PDF
    The development of hardware and software for an interactive, minicomputer based processing and display system for atmospheric and oceanographic information extraction and image data analysis is described. The major applications of the system are discussed as well as enhancements planned for the future

    Links between different analytic descriptions of constant mean curvature surfaces

    Full text link
    Transformations between different analytic descriptions of constant mean curvature (CMC) surfaces are established. In particular, it is demonstrated that the system ∂ψ1=(∣ψ1∣2+∣ψ2∣2)ψ2∂ˉψ2=−(∣ψ1∣2+∣ψ2∣2)ψ1 \begin{split} &\partial \psi_{1} = (|\psi_{1}|^{2} + |\psi_{2}|^{2}) \psi_{2} \\ &\bar{\partial} \psi_{2} =- (|\psi_{1}|^{2} + |\psi_{2}|^{2}) \psi_{1} \end{split} descriptive of CMC surfaces within the framework of the generalized Weierstrass representation, decouples into a direct sum of the elliptic Sh-Gordon and Laplace equations. Connections of this system with the sigma model equations are established. It is pointed out, that the instanton solutions correspond to different Weierstrass parametrizations of the standard sphere S2⊂E3S^{2} \subset E^{3}

    The quantum state vector in phase space and Gabor's windowed Fourier transform

    Full text link
    Representations of quantum state vectors by complex phase space amplitudes, complementing the description of the density operator by the Wigner function, have been defined by applying the Weyl-Wigner transform to dyadic operators, linear in the state vector and anti-linear in a fixed `window state vector'. Here aspects of this construction are explored, with emphasis on the connection with Gabor's `windowed Fourier transform'. The amplitudes that arise for simple quantum states from various choices of window are presented as illustrations. Generalized Bargmann representations of the state vector appear as special cases, associated with Gaussian windows. For every choice of window, amplitudes lie in a corresponding linear subspace of square-integrable functions on phase space. A generalized Born interpretation of amplitudes is described, with both the Wigner function and a generalized Husimi function appearing as quantities linear in an amplitude and anti-linear in its complex conjugate. Schr\"odinger's time-dependent and time-independent equations are represented on phase space amplitudes, and their solutions described in simple cases.Comment: 36 pages, 6 figures. Revised in light of referees' comments, and further references adde
    • …
    corecore