2,201 research outputs found
Conservation laws for invariant functionals containing compositions
The study of problems of the calculus of variations with compositions is a
quite recent subject with origin in dynamical systems governed by chaotic maps.
Available results are reduced to a generalized Euler-Lagrange equation that
contains a new term involving inverse images of the minimizing trajectories. In
this work we prove a generalization of the necessary optimality condition of
DuBois-Reymond for variational problems with compositions. With the help of the
new obtained condition, a Noether-type theorem is proved. An application of our
main result is given to a problem appearing in the chaotic setting when one
consider maps that are ergodic.Comment: Accepted for an oral presentation at the 7th IFAC Symposium on
Nonlinear Control Systems (NOLCOS 2007), to be held in Pretoria, South
Africa, 22-24 August, 200
Solutions of differential equations in a Bernstein polynomial basis
AbstractAn algorithm for approximating solutions to differential equations in a modified new Bernstein polynomial basis is introduced. The algorithm expands the desired solution in terms of a set of continuous polynomials over a closed interval and then makes use of the Galerkin method to determine the expansion coefficients to construct a solution. Matrix formulation is used throughout the entire procedure. However, accuracy and efficiency are dependent on the size of the set of Bernstein polynomials and the procedure is much simpler compared to the piecewise B spline method for solving differential equations. A recursive definition of the Bernstein polynomials and their derivatives are also presented. The current procedure is implemented to solve three linear equations and one nonlinear equation, and excellent agreement is found between the exact and approximate solutions. In addition, the algorithm improves the accuracy and efficiency of the traditional methods for solving differential equations that rely on much more complicated numerical techniques. This procedure has great potential to be implemented in more complex systems where there are no exact solutions available except approximations
Group Theory and Quasiprobability Integrals of Wigner Functions
The integral of the Wigner function of a quantum mechanical system over a
region or its boundary in the classical phase plane, is called a
quasiprobability integral. Unlike a true probability integral, its value may
lie outside the interval [0,1]. It is characterized by a corresponding
selfadjoint operator, to be called a region or contour operator as appropriate,
which is determined by the characteristic function of that region or contour.
The spectral problem is studied for commuting families of region and contour
operators associated with concentric disks and circles of given radius a. Their
respective eigenvalues are determined as functions of a, in terms of the
Gauss-Laguerre polynomials. These polynomials provide a basis of vectors in
Hilbert space carrying the positive discrete series representations of the
algebra su(1,1)or so(2,1). The explicit relation between the spectra of
operators associated with disks and circles with proportional radii, is given
in terms of the dicrete variable Meixner polynomials.Comment: 11 pages, latex fil
Atmospheric and Oceanographic Information Processing System (AOIPS) system description
The development of hardware and software for an interactive, minicomputer based processing and display system for atmospheric and oceanographic information extraction and image data analysis is described. The major applications of the system are discussed as well as enhancements planned for the future
Links between different analytic descriptions of constant mean curvature surfaces
Transformations between different analytic descriptions of constant mean
curvature (CMC) surfaces are established. In particular, it is demonstrated
that the system descriptive of CMC surfaces within the
framework of the generalized Weierstrass representation, decouples into a
direct sum of the elliptic Sh-Gordon and Laplace equations. Connections of this
system with the sigma model equations are established. It is pointed out, that
the instanton solutions correspond to different Weierstrass parametrizations of
the standard sphere
The quantum state vector in phase space and Gabor's windowed Fourier transform
Representations of quantum state vectors by complex phase space amplitudes,
complementing the description of the density operator by the Wigner function,
have been defined by applying the Weyl-Wigner transform to dyadic operators,
linear in the state vector and anti-linear in a fixed `window state vector'.
Here aspects of this construction are explored, with emphasis on the connection
with Gabor's `windowed Fourier transform'. The amplitudes that arise for simple
quantum states from various choices of window are presented as illustrations.
Generalized Bargmann representations of the state vector appear as special
cases, associated with Gaussian windows. For every choice of window, amplitudes
lie in a corresponding linear subspace of square-integrable functions on phase
space. A generalized Born interpretation of amplitudes is described, with both
the Wigner function and a generalized Husimi function appearing as quantities
linear in an amplitude and anti-linear in its complex conjugate.
Schr\"odinger's time-dependent and time-independent equations are represented
on phase space amplitudes, and their solutions described in simple cases.Comment: 36 pages, 6 figures. Revised in light of referees' comments, and
further references adde
- …