14 research outputs found

    Multimethodological study of non-linear strain effects induced by thermal stresses on jointed rock masses

    No full text
    A multimethodological method based on environmental, stress–strain, microseismic, and ambient seismic noise monitoring is here presented, with a view to identifying non-linearity of thermally-induced deformation of jointed rock masses at different dimensional scales. Rock masses experience non-negligible deformation cycles due to the continuous fluctuations of their surficial temperatures. However, the interpretation of such strain effects, in terms of the ratio between elastic and inelastic percentages, is still debated. In particular, the relation between microseismic emissions, considered as primary indicators of crack-growth related energy release, and resonant frequencies fluctuations of rock structures, witnesses of the thermally-induced effect at the macro- or structure-scale, have not been yet studied within a coupled framework. The combination of different approaches able to investigate the behavior of rock masses from micro- to macro-scale, then from fracture-scale to joint-isolated rock blocks up to rock structures, could provide new insights and perspectives on the effects related to shallow thermal stresses fluctuations. This paper presents the preliminary outcomes from two case studies, the Acuto experimental test-site (Italy) and the Wied Il-Mielaħ sea arch (Malta), where multiparametric monitoring surveys were conducted and are still ongoing, aiming at the assessment of the cause-to-effect relation between near-surface thermal stresses and induced strains. Data analysis was carried out following different approaches, with a particular emphasis on the Acuto test-site dataset recorded so far, allowing to establish a well-constrained correlation among temperature fluctuations and rock mass deformation both at the daily and seasonal scale

    The dynamic response of prone-to-fall columns to ambient vibrations: comparison between measurements and numerical modelling

    No full text
    International audienceSeismic noise measurements (ambient vibrations) have been increasingly used in rock slope stability assessment for both investigation and monitoring purposes. Recent studies made on gravitational hazard revealed significant spectral amplification at given frequencies and polarization of the wave-field in the direction of maximum rock slope displacement. Different properties (resonance frequencies, polarization and spectral ratio amplitudes) can be derived from the spectral analysis of the seismic noise to characterize unstable rock masses. The objective here is to identify the dynamic parameters that could be used to gain information on prone-to-fall rock columns' geometry. To do so, the dynamic response of prone-to-fall columns to seismic noise has been studied on two different sites exhibiting cliff-like geometry. Dynamic parameters (main resonance frequency and spectral ratio amplitudes) that could characterize the column decoupling were extracted from seismic noise and their variations were studied taking into account the external environmental parameter fluctuations. Based on this analysis, a two-dimensional numerical model has been set up to assess the influence of the rear vertical fractures identified on both sites on the rock column motion response. Although a simple relation was found between spectral ratio amplitudes and the rock column slenderness, it turned out that the resonance frequency is more stable than the spectral ratio amplitudes to characterize this column decoupling, provided that the elastic properties of the column can be estimated. The study also revealed the effect of additional remote fractures on the dynamic parameters, which in turn could be used for detecting the presence of such discontinuities

    Seismic and mechanical studies of the artificially triggered rockfall at Mount NĂ©ron (French Alps, December 2011)

    Get PDF
    The eastern limestone cliff of Mount NĂ©ron (French Alps) was the theater for two medium-size rockfalls between summer and winter 2011. On 14 August 2011, a ~2000 m3 rock compartment detached from the cliff, fell 100 m below and propagated down the slope. Although most of the fallen rocks deposited on the upper part of the slope, some blocks of about 15 m in size were stopped by a ditch and an earthen barrier after a run-out of 800 m. An unstable overhanging ~2600 m3 compartment remained attached to the cliff and was blasted on 13 December 2011. During this artificially triggered event, 7 blocks reached the same ditch, with volumes ranging from 0.8 to 12 m3. A semi-permanent seismic array located about 2.5 km from the site recorded the two events, providing a unique opportunity to understand and to compare the seismic phases generated during natural and artificially triggered rockfalls. Both events have signal duration of ~100 s with comparable maximum amplitudes recorded at large distances (computed local magnitude of 1.14 and 1.05, respectively), most of the energy lying below 20 Hz. Remote sensing techniques (photogrammetry and lidar) were employed before and after the provoked rockfall, allowing the volume and fracturing to be characterized. This event was filmed by two video cameras, and the generated ground motions were recorded using two temporary 3C seismic sensors and three seismic arrays deployed at the slope toe. Videos and seismogram processing provided estimates of the propagation velocity during the successive rockfall phases, which ranges from 12 to 30 m s−1. The main seismic phases were obtained from combined video and seismic signal analyses. The two most energetic phases are related to the ground impact of fallen material after free fall, and to individual rock block impacts into the ditch and the earthen barrier. These two phases are characterized by similar low-frequency content but show very different particle motions. The discrete element technique allowed reproducing the key features of the rockfall dynamics, yielding propagation velocities compatible with experimental observations

    Spectral Analysis of Prone-to-fall Rock Compartments using Ambient Vibrations

    No full text
    International audienceThe dynamic response of four unstable rock compartments in the Alps has been studied using the ambient vibration technique, with the aim of identifying precursors to rockfalls. The test sites present various geological settings (limestone, argillite, and shale-sandstone series), failure mechanisms and volumes. The ambient vibration spectra measured on the unstable compartments systematically showed clear energy peaks at specific frequencies, in contrast with records made on the adjacent stable rock masses. These predominant frequencies were interpreted as resonant frequencies of the unstable compartments, in agreement with 2-D modal analysis. In the horizontal plane, ground motion at the fundamental frequency was found to be systematically parallel to the line of maximum slope gradient, and perpendicular to the main bounding fracture observed at most of the sites. The fundamental frequency of each prone-to fall compartment shows reversible variations related to temperature fluctuations at different timescales, with a significant contrast in magnitude and phase shift between sites. At the more fractured site, resonance seems to result from a contrast in internal rigidity between the compartment and adjacent rock mass, rather than from decoupling along a rear fracture, which is the mechanism observed at the three other sites. No change in fundamental frequency resulting from damage was observed over the period of study

    Application of ambient vibration techniques for monitoring the triggering of rapid landslides

    No full text
    International audienceAmbient vibration techniques are increasingly used for monitoring landslides. Two types of rapid landslides are considered in this study: mudslides in clayey sediments and rockfalls of intermediate size (10(3)-10(5) m(3)) in rigid rocks. The change of ambient vibration properties with time allows variations of internal mass characteristics to be obtained. This information is complementary to the surface motion measurements derived from air or ground based techniques and could be included in a monitoring system for landslides exhibiting a rapid mass movement
    corecore