649 research outputs found

    Topological Wilson-loop area law manifested using a superposition of loops

    Full text link
    We introduce a new topological effect involving interference of two meson loops, manifesting a path-independent topological area dependence. The effect also draws a connection between quark confinement, Wilson-loops and topological interference effects. Although this is only a gedanken experiment in the context of particle physics, such an experiment may be realized and used as a tool to test confinement effects and phase transitions in quantum simulation of dynamic gauge theories.Comment: Superceding arXiv:1206.2021v1 [quant-ph

    Simulation of gauge transformations on systems of ultracold atoms

    Full text link
    We show that gauge transformations can be simulated on systems of ultracold atoms. We discuss observables that are invariant under these gauge transformations and compute them using a tensor network ansatz that escapes the phase problem. We determine that the Mott-insulator-to-superfluid critical point is monotonically shifted as the induced magnetic flux increases. This result is stable against the inclusion of a small amount of entanglement in the variational ansatz.Comment: 14 pages, 6 figure

    Optical lattice quantum simulator for QED in strong external fields: spontaneous pair creation and the Sauter-Schwinger effect

    Full text link
    Spontaneous creation of electron-positron pairs out of the vacuum due to a strong electric field is a spectacular manifestation of the relativistic energy-momentum relation for the Dirac fermions. This fundamental prediction of Quantum Electrodynamics (QED) has not yet been confirmed experimentally as the generation of a sufficiently strong electric field extending over a large enough space-time volume still presents a challenge. Surprisingly, distant areas of physics may help us to circumvent this difficulty. In condensed matter and solid state physics (areas commonly considered as low energy physics), one usually deals with quasi-particles instead of real electrons and positrons. Since their mass gap can often be freely tuned, it is much easier to create these light quasi-particles by an analogue of the Sauter-Schwinger effect. This motivates our proposal of a quantum simulator in which excitations of ultra-cold atoms moving in a bichromatic optical lattice represent particles and antiparticles (holes) satisfying a discretized version of the Dirac equation together with fermionic anti-commutation relations. Using the language of second quantization, we are able to construct an analogue of the spontaneous pair creation which can be realized in an (almost) table-top experiment.Comment: 21 pages, 10 figure

    Net Efficacy Adjusted for Risk (NEAR): A Simple Procedure for Measuring Risk:Benefit Balance

    Get PDF
    BACKGROUND: Although several mathematical models have been proposed to assess the risk:benefit of drugs in one measure, their use in practice has been rather limited. Our objective was to design a simple, easily applicable model. In this respect, measuring the proportion of patients who respond favorably to treatment without being affected by adverse drug reactions (ADR) could be a suitable endpoint. However, remarkably few published clinical trials report the data required to calculate this proportion. As an approach to the problem, we calculated the expected proportion of this type of patients. METHODOLOGY/PRINCIPAL FINDINGS: Theoretically, responders without ADR may be obtained by multiplying the total number of responders by the total number of subjects that did not suffer ADR, and dividing the product by the total number of subjects studied. When two drugs are studied, the same calculation may be repeated for the second drug. Then, by constructing a 2 x 2 table with the expected frequencies of responders with and without ADR, and non-responders with and without ADR, the odds ratio and relative risk with their confidence intervals may be easily calculated and graphically represented on a logarithmic scale. Such measures represent "net efficacy adjusted for risk" (NEAR). We assayed the model with results extracted from several published clinical trials or meta-analyses. On comparing our results with those originally reported by the authors, marked differences were found in some cases, with ADR arising as a relevant factor to balance the clinical benefit obtained. The particular features of the adverse reaction that must be weighed against benefit is discussed in the paper. CONCLUSION: NEAR representing overall risk-benefit may contribute to improving knowledge of drug clinical usefulness. As most published clinical trials tend to overestimate benefits and underestimate toxicity, our measure represents an effort to change this trend

    Technical results, clinical efficacy and predictors of outcome of intercostal arteries embolization for hemothorax: A two-institutions’ experience

    Get PDF
    Background: To evaluate the clinical efficacy and identify the predictors of outcome of intercostal arterial embolization for hemothorax caused by intercostal artery (ICA) injuries. Methods: A retrospective multi-institutional study was conducted. Outcomes were analyzed in 30 consecutive patients presenting with hemothorax caused by active ICA hemorrhage undergoing transcatheter arterial embolization (TAE). Clinical and procedural parameters were compared between outcomes groups. Results: Overall technical success rate was 87% (n=26). Among the 4 failed cases, 2 underwent repeated TAE and 2 underwent additional surgery. Overall 30-day mortality rate was 23%. Low haemoglobin levels and haematocrit, hepatic comorbidities and more than one artery undergoing embolization increased technical failure rate significantly. Survival was poorer in patients with massive bleeding. Conclusions: ICA embolization was found to be a safe and effective method in treating hemothorax caused by active ICA haemorrhage. Careful pre-embolization evaluation may be required for patient with low haemoglobin levels and haematocrit, hepatic comorbidities and active haemorrhage from more than one artery

    Ocular related emergencies in Spain during the COVID-19 pandemic, a multicenter study

    Get PDF
    Purpose: To evaluate ophthalmological emergencies (OE) during the COVID-19 pandemic comparing them with the same period of the previous year. Methods: Retrospective observational study of all OE visits in four tertiary hospitals in Spain comparing data from March 16th to April 30th, 2020 (COVID-19 period) and the same period of 2019 (pre-COVID-19 period). Severity of the conditions was assessed following Channa et al. publication. Data on demographics, diagnosis and treatments were collected from Electronic Medical Records. Results: During lockdown, OE significantly declined by 75.18%, from 7, 730 registered in the pre-COVID-19 period to 1, 928 attended during the COVID-19 period (p < 0.001). In 2019, 23.86% of visits were classified as emergent, 59.50% as non-emergent, and 16.65% could not be determined. In 2020, the percentage of emergent visits increased up to 29.77%, non-emergent visits significantly decreased to 52.92% (p < 0.001), and 17.31% of the visits were classified as “could not determine”. During the pandemic, people aged between 45 and 65 years old represented the largest attending group (37.89%), compared to 2019, where patients over 65 years were the majority (39.80%). In 2019, most frequent diagnosis was unspecified acute conjunctivitis (11.59%), followed by vitreous degeneration (6.47%), and punctate keratitis (5.86%). During the COVID-19 period, vitreous degeneration was the first cause for consultation (9.28%), followed by unspecified acute conjunctivitis (5.63%) and punctate keratitis (5.85%). Conclusions: OE visits dropped significantly during the pandemic in Spain (75.18%), although more than half were classified as non-urgent conditions, indicating a lack of understanding of the really emergent ocular pathologies among population. © 2021, The Author(s)
    • 

    corecore