25,927 research outputs found

    OpenPING: A Reflective Middleware for the Construction of Adaptive Networked Game Applications

    Get PDF
    The emergence of distributed Virtual Reality (VR) applications that run over the Internet has presented networked game application designers with new challenges. In an environment where the public internet streams multimedia data and is constantly under pressure to deliver over widely heterogeneous user-platforms, there has been a growing need that distributed VR applications be aware of and adapt to frequent variations in their context of execution. In this paper, we argue that in contrast to research efforts targeted at improvement of scalability, persistence and responsiveness capabilities, much less attempts have been aimed at addressing the flexibility, maintainability and extensibility requirements in contemporary distributed VR platforms. We propose the use of structural reflection as an approach that not only addresses these requirements but also offers added value in the form of providing a framework for scalability, persistence and responsiveness that is itself flexible, maintainable and extensible. We also present an adaptive middleware platform implementation called OpenPING1 that supports our proposal in addressing these requirements

    Cosmic Origins Spectrograph Observations of Warm Intervening Gas Towards 3C263

    Full text link
    We present HST/COS high S/N observations of the z = 0.32566 multi-phase absorber towards 3C263. The COS data shows absorption from H I, O VI, C III, N III, Si III and C II. The Ne VIII in this absorber is detected in the FUSE spectrum. The low and intermediate ions are kinematically aligned with each other and H I and display narrow line widths of 6 km/s. The O VI lines are kinematically offset by 12 km/s from the low ions and are a factor of four broader. All metal ions except O VI and Ne VIII are consistent with an origin in gas photoionized by the extragalactic background radiation. The bulk of the observed H I is also traced by this photoionized medium. The carbon abundance in this gas phase is near-solar. The O VI and Ne VIII favor an origin in collisionally ionized gas at T = 5.2 x 10^5 K. The H I absorption associated with this warm absorber is a BLA marginally detected in the COS spectrum. This warm gas phase has total hydrogen column density of N(H) ~ 3 x 10^19 which is 2 dex higher than what is traced by the photoionized gas. Simultaneous detection of O VI, Ne VIII and BLAs in an absorber can be a strong diagnostic of gas with temperature in the range of 10^5 - 10^6 K corresponding to the warm phase of the WHIM or shock-heated gas in the extended halos of galaxies.Comment: Accepted for publication in the Astrophysical Journa

    Socio-hydrological modelling: a review asking “why, what and how?”

    Get PDF
    Interactions between humans and the environment are occurring on a scale that has never previously been seen; the scale of human interaction with the water cycle, along with the coupling present between social and hydrological systems, means that decisions that impact water also impact people. Models are often used to assist in decision-making regarding hydrological systems, and so in order for effective decisions to be made regarding water resource management, these interactions and feedbacks should be accounted for in models used to analyse systems in which water and humans interact. This paper reviews literature surrounding aspects of socio-hydrological modelling. It begins with background information regarding the current state of socio-hydrology as a discipline, before covering reasons for modelling and potential applications. Some important concepts that underlie socio-hydrological modelling efforts are then discussed, including ways of viewing socio-hydrological systems, space and time in modelling, complexity, data and model conceptualisation. Several modelling approaches are described, the stages in their development detailed and their applicability to socio-hydrological cases discussed. Gaps in research are then highlighted to guide directions for future research. The review of literature suggests that the nature of socio-hydrological study, being interdisciplinary, focusing on complex interactions between human and natural systems, and dealing with long horizons, is such that modelling will always present a challenge; it is, however, the task of the modeller to use the wide range of tools afforded to them to overcome these challenges as much as possible. The focus in socio-hydrology is on understanding the human–water system in a holistic sense, which differs from the problem solving focus of other water management fields, and as such models in socio-hydrology should be developed with a view to gaining new insight into these dynamics. There is an essential choice that socio-hydrological modellers face in deciding between representing individual system processes or viewing the system from a more abstracted level and modelling it as such; using these different approaches has implications for model development, applicability and the insight that they are capable of giving, and so the decision regarding how to model the system requires thorough consideration of, among other things, the nature of understanding that is sought

    Fine Grained Component Engineering of Adaptive Overlays: Experiences and Perspectives

    Get PDF
    Recent years have seen significant research being carried out into peer-to-peer (P2P) systems. This work has focused on the styles and applications of P2P computing, from grid computation to content distribution; however, little investigation has been performed into how these systems are built. Component based engineering is an approach that has seen successful deployment in the field of middleware development; functionality is encapsulated in ‘building blocks’ that can be dynamically plugged together to form complete systems. This allows efficient, flexible and adaptable systems to be built with lower overhead and development complexity. This paper presents an investigation into the potential of using component based engineering in the design and construction of peer-to-peer overlays. It is highlighted that the quality of these properties is dictated by the component architecture used to implement the system. Three reusable decomposition architectures are designed and evaluated using Chord and Pastry case studies. These demonstrate that significant improvements can be made over traditional design approaches resulting in much more reusable, (re)configurable and extensible systems
    corecore