325 research outputs found

    Asymptotic symmetry and conservation laws in 2d Poincar\'e gauge theory of gravity

    Full text link
    The structure of the asymptotic symmetry in the Poincar\'e gauge theory of gravity in 2d is clarified by using the Hamiltonian formalism. The improved form of the generator of the asymptotic symmetry is found for very general asymptotic behaviour of phase space variables, and the related conserved quantities are explicitly constructed.Comment: 22 pages, Plain Te

    HASH(0x563d43feb630)

    Get PDF

    Dirac field in topologically massive gravity

    Full text link
    We consider a Dirac field coupled minimally to the Mielke-Baekler model of gravity and investigate cosmological solutions in three dimensions. We arrive at a family of solutions which exists even in the limit of vanishing cosmological constant.Comment: 12 pages. Title changed. Conclusion extended. Appendix added. To appear in Gen. Rel. Gra

    Abelian Magnetic Monopoles and Topologically Massive Vector Bosons in Scalar-Tensor Gravity with Torsion Potential

    Full text link
    A Lagrangian formulation describing the electromagnetic interaction - mediated by topologically massive vector bosons - between charged, spin-(1/2) fermions with an abelian magnetic monopole in a curved spacetime with non-minimal coupling and torsion potential is presented. The covariant field equations are obtained. The issue of coexistence of massive photons and magnetic monopoles is addressed in the present framework. It is found that despite the topological nature of photon mass generation in curved spacetime with isotropic dilaton field, the classical field theory describing the nonrelativistic electromagnetic interaction between a point-like electric charge and magnetic monopole is inconsistent.Comment: 18 pages, no figure

    Monopoles near the Planck Scale and Unification

    Get PDF
    Considering our (3+1)-dimensional space-time as, in some way, discrete or l attice with a parameter a=λPa=\lambda_P, where λP\lambda_P is the Planck length, we have investigated the additional contributions of lattice artifact monopoles to beta-functions of the renormalisation group equations for the running fine structure constants αi(μ)\alpha_i(\mu) (i=1,2,3 correspond to the U(1), SU(2) and SU(3) gauge groups of the Standard Model) in the Family Replicated Gauge Group Model (FRGGM) which is an extension of the Standard Model at high energies. It was shown that monopoles have NfamN_{fam} times smaller magnetic charge in FRGGM than in SM (NfamN_{fam} is the number of families in FRGGM). We have estimated al so the enlargement of a number of fermions in FRGGM leading to the suppression of the asymptotic freedom in the non-Abelian theory. We have shown that, in contrast to the case of AntiGUT when the FRGGM undergoes the breakdown at μ=μG1018\mu=\mu_G\sim 10^{18} GeV, we have the possibility of unification if the FRGGM-breakdown occurs at μG1014\mu_G\sim 10^{14} GeV. By numerical calculations we obtained an example of the unification of all gauge interactions (including gravity) at the scale μGUT1018.4\mu_{GUT}\approx 10^{18.4} GeV. We discussed the possibility of [SU(5)]3[SU(5)]^3 or [SO(10)]3[SO(10)]^3 (SUSY or not SUSY) unifications.Comment: 49 pages, 7 figure

    The Central Charge of the Warped AdS^3 Black Hole

    Full text link
    The AdS/CFT conjecture offers the possibility of a quantum description for a black hole in terms of a CFT. This has led to the study of general AdS^3 type black holes with a view to constructing an explicit toy quantum black hole model. Such a CFT description would be characterized by its central charge and the dimensions of its primary fields. Recently the expression for the central charges (C_L, C_R) of the CFT dual to the warped AdS^3 have been determined using asymptotic symmetry arguments. The central charges depend, as expected, on the warping factor. We show that topological arguments, used by Witten to constrain central charges for the BTZ black hole, can be generalized to deal with the warped AdS^3 case. Topology constrains the warped factor to be rational numbers while quasinormal modes are conjectured to give the dimensions of primary fields. We find that in the limit when warping is large or when it takes special rational values the system tends to Witten's conjectured unique CFT's with central charges that are multiples of 24.Comment: 6 pages, Latex fil

    Phase transition in gauge theories, monopoles and the Multiple Point Principle

    Full text link
    This review is devoted to the Multiple Point Principle (MPP), according to which several vacuum states with the same energy density exist in Nature. The MPP is implemented to the Standard Model (SM), Family replicated gauge group model (FRGGM) and phase transitions in gauge theories with/without monopoles. Lattice gauge theories are reviewed. The lattice results for critical coupling constants are compared with those of the Higgs Monopole Model (HMM), in which the lattice artifact monopoles are replaced by the point-like Higgs scalar particles with a magnetic charge. Considering our (3+1)-dimensional space-time as discrete, for example, as a lattice with a parameter a=\lambda_P, equal to the Planck length, we have investigated the additional contributions of monopoles to beta-functions of renormalization group equations in the FRGGM extended beyond the SM at high (the Planck scale) energies. We have reviewed that, in contrast to the Anti-grand unified theory (AGUT), there exists a possibility of unification of all gauge interactions (including gravity) near the Planck scale due to monopoles. The unifications [SU(5)]^3 and [SO(10)]^3 at the GUT-scale \sim 10^{18} GeV are briefly discussed.Comment: 100 pages, 25 figures, typos correcte

    Hamiltonian Poincar\'e Gauge Theory of Gravitation

    Full text link
    We develop a Hamiltonian formalism suitable to be applied to gauge theories in the presence of Gravitation, and to Gravity itself when considered as a gauge theory. It is based on a nonlinear realization of the Poincar\'e group, taken as the local spacetime group of the gravitational gauge theory, with SO(3)SO(3) as the classification subgroup. The Wigner--like rotation induced by the nonlinear approach singularizes out the role of time and allows to deal with ordinary SO(3)SO(3) vectors. We apply the general results to the Einstein--Cartan action. We study the constraints and we obtain Einstein's classical equations in the extremely simple form of time evolution equations of the coframe. As a consequence of our approach, we identify the gauge--theoretical origin of the Ashtekar variables.Comment: 38 pages, plainTe

    Magnetic phase transition in V2O3 nanocrystals

    Full text link
    V2O3 nanocrystals can be synthesized through hydrothermal reduction of VO(OH)2 using hydrazine as a reducing agent. Addition of different ligands to the reaction produces nanoparticles, nanorods and nanoplatelets of different sizes. Small nanoparticles synthesized in this manner show suppression of the magnetic phase transition to lower temperatures. Using muon spin relaxation spectroscopy and synchrotron x-ray diffraction, it is determined that the volume fraction of the high-temperature phase, characterized by a rhombohedral structure and paramagnetism, gradually declines with decreasing temperature, in contrast to the sharp transition observed in bulk V2O3.Comment: 6 pages, 6 figure
    corecore