18 research outputs found

    Models for Heavy-tailed Asset Returns

    Get PDF
    Many of the concepts in theoretical and empirical finance developed over the past decades – including the classical portfolio theory, the Black-Scholes-Merton option pricing model or the RiskMetrics variance-covariance approach to VaR – rest upon the assumption that asset returns follow a normal distribution. But this assumption is not justified by empirical data! Rather, the empirical observations exhibit excess kurtosis, more colloquially known as fat tails or heavy tails. This chapter is intended as a guide to heavy-tailed models. We first describe the historically oldest heavy-tailed model – the stable laws. Next, we briefly characterize their recent lighter-tailed generalizations, the so-called truncated and tempered stable distributions. Then we study the class of generalized hyperbolic laws, which – like tempered stable distributions – can be classified somewhere between infinite variance stable laws and the Gaussian distribution. Finally, we provide numerical examples

    Characterization of matrix probability distributions by mean residual lifetime

    No full text

    Tail Probabilities and Partial Moments for Quadratic Forms in Multivariate Generalized Hyperbolic Random Vectors

    No full text
    Countless test statistics can be written as quadratic forms in certain random vectors, or ratios thereof. Consequently, their distribution has received considerable attention in the literature. Except for a few special cases, no closed-form expression for the cdf exists, and one resorts to numerical methods. Traditionally the problem is analyzed under the assumption of joint Gaussianity; the algorithm that is usually employed is that of Imhof (1961). The present manuscript generalizes this result to the case of multivariate generalized hyperbolic (MGHyp) random vectors. The MGHyp is a very exible distribution which nests, amongothers, the multivariate t, Laplace, and variance gamma distributions. An expression for the first partial moment is also obtained, which plays a vital role in financial risk management. The proof involves a generalization of the classic inversion formula due to GilPelaez (1951).Two applications are considered: first, the finite-sample distribution of the 2SLS estimatorof a structural parameter. Second, the Value at Risk and Expected Shortfall of a quadraticportfolio with heavy-tailed risk factors
    corecore