24,376 research outputs found
Recommended from our members
Portable Perimetry Using Eye-Tracking on a Tablet Computer—A Feasibility Assessment
Purpose: Visual field (VF) examination by standard automated perimetry (SAP) is an important method of clinical assessment. However, the complexity of the test, and its use of bulky, expensive equipment makes it impractical for case-finding. We propose and evaluate a new approach to paracentral VF assessment that combines an inexpensive eye-tracker with a portable tablet computer (“Eyecatcher”).
Methods: Twenty-four eyes from 12 glaucoma patients, and 12 eyes from six age-similar controls were examined. Participants were tested monocularly (once per eye), with both the novel Eyecatcher test and traditional SAP (HFA SITA standard 24-2). For Eyecatcher, the participant's task was to simply to look at a sequence of fixed-luminance dots, presented relative to the current point of fixation. Start and end fixations were used to determine locations where stimuli were seen/unseen, and to build a continuous map of sensitivity loss across a VF of approximately 20°.
Results: Eyecatcher was able to clearly separate patients from controls, and the results were consistent with those from traditional SAP. In particular, mean Eyecatcher scores were strongly correlated with mean deviation scores (r2 = 0.64, P < 0.001), and there was good concordance between corresponding VF locations (∼84%). Participants reported that Eyecatcher was more enjoyable, easier to perform, and less tiring than SAP (all P < 0.001).
Conclusions: Portable perimetry using an inexpensive eye-tracker and a tablet computer is feasible, although possible means of improvement are suggested.
Translational Relevance: Such a test could have significant utility as a case finding device
Fluctuations in Shear-Jammed States: A Statistical Ensemble Approach
Granular matter exists out of thermal equilibrium, i.e. it is athermal. While
conventional equilibrium statistical mechanics is not useful for characterizing
granular materials, the idea of constructing a statistical ensemble analogous
to its equilibrium counterpart to describe static granular matter was proposed
by Edwards and Oakshott more than two decades ago. Recent years have seen
several implementations of this idea. One of these is the stress ensemble,
which is based on properties of the force moment tensor, and applies to
frictional and frictionless grains. We demonstrate the full utility of this
statistical framework in shear jammed (SJ) experimental states [1,2], a special
class of granular solids created by pure shear, which is a strictly
non-equilbrium protocol for creating solids. We demonstrate that the stress
ensemble provides an excellent quantitative description of fluctuations in
experimental SJ states. We show that the stress fluctuations are controlled by
a single tensorial quantity: the angoricity of the system, which is a direct
analog of the thermodynamic temperature. SJ states exhibit significant
correlations in local stresses and are thus inherently different from
density-driven, isotropically jammed (IJ) states.Comment: 6 pages, 4 figure
Why Do Granular Materials Stiffen with Shear Rate? : Test of Novel Stress-Based Statistics
Peer reviewedPublisher PD
Recommended from our members
Refinement and preliminary evaluation of two tablet-based tests of real-world visual function
PURPOSE: To describe, refine, evaluate, and provide normative control data for two freely available tablet-based tests of real-world visual function, using a cohort of young, normally-sighted adults.
METHODS: Fifty young (18-40 years), normally-sighted adults completed tablet-based assessments of (1) face discrimination and (2) visual search. Each test was performed twice, to assess test-retest repeatability. Post-hoc analyses were performed to determine the number of trials required to obtain stable estimates of performance. Distributions were fitted to the normative data to determine the 99% population-boundary for normally sighted observers. Participants were also asked to rate their comprehension of each test.
RESULTS: Both tests provided stable estimates in around 20 trials (~1-4 min), with only a further reduction of 14%-17% in the 95% Coefficient of Repeatability (CoR95 ) when an additional 40 trials were included. When using only ~20 trials: median durations for the first run of each test were 191 s (Faces) and 51 s (Search); test-retest CoR95 were 0.27 d (Faces) and 0.84 s (Search); and normative 99% population-limits were 3.50 d (Faces) and 3.1 s (Search). No participants exhibited any difficulties completing either test (100% completion rate), and ratings of task-understanding were high (Faces: 9.6 out of 10; Search: 9.7 out of 10).
CONCLUSIONS: This preliminary assessment indicated that both tablet-based tests are able to provide simple, quick, and easy-to-administer measures of real-world visual function in normally-sighted young adults. Further work is required to assess their accuracy and utility in older people and individuals with visual impairment. Potential applications are discussed, including their use in clinic waiting rooms, and as an objective complement to Patient Reported Outcome Measures (PROMs)
Shear-induced rigidity of frictional particles: Analysis of emergent order in stress space
Solids are distinguished from fluids by their ability to resist shear. In
traditional solids, the resistance to shear is associated with the emergence of
broken translational symmetry as exhibited by a non-uniform density pattern,
which results from either minimizing the energy cost or maximizing the entropy
or both. In this work, we focus on a class of systems, where this paradigm is
challenged. We show that shear-driven jamming in dry granular materials is a
collective process controlled solely by the constraints of mechanical
equilibrium. We argue that these constraints lead to a broken translational
symmetry in a dual space that encodes the statistics of contact forces and the
topology of the contact network. The shear-jamming transition is marked by the
appearance of this broken symmetry. We extend our earlier work, by comparing
and contrasting real space measures of rheology with those obtained from the
dual space. We investigate the structure and behavior of the dual space as the
system evolves through the rigidity transition in two different shear
protocols. We analyze the robustness of the shear-jamming scenario with respect
to protocol and packing fraction, and demonstrate that it is possible to define
a protocol-independent order parameter in this dual space, which signals the
onset of rigidity.Comment: 14 pages, 17 figure
The Low Column Density Lyman-alpha Forest
We develop an analytical method based on the lognormal approximation to
compute the column density distribution of the Lyman-alpha forest in the low
column density limit. We compute the column density distributions for six
different cosmological models and found that the standard, COBE-normalized CDM
model cannot fit the observations of the Lyman-alpha forest at z=3. The
amplitude of the fluctuations in that model has to be lowered by a factor of
almost 3 to match observations. However, the currently viable cosmological
models like the lightly tilted COBE-normalized CDM+Lambda model, the CHDM model
with 20% neutrinos, and the low-amplitude Standard CDM model are all in
agreement with observations, to within the accuracy of our approximation, for
the value of the cosmological baryon density at or higher than the old Standard
Bing Bang Nucleosynthesis value of 0.0125 for the currently favored value of
the ionizing radiation intensity. With the low value for the baryon density
inferred by Hogan & Rugers (1996), the models can only marginally match
observations.Comment: three postscript figures included, submitted to ApJ
Difference of optical conductivity between one- and two-dimensional doped nickelates
We study the optical conductivity in doped nickelates, and find the dramatic
difference of the spectrum in the gap (\alt4 eV) between one- (1D)
and two-dimensional (2D) nickelates. The difference is shown to be caused by
the dependence of hopping integral on dimensionality. The theoretical results
explain consistently the experimental data in 1D and
2D nickelates, YCaBaNiO and LaSrNiO,
respectively. The relation between the spectrum in the X-ray aborption
experiments and the optical conductivity in LaSrNiO is
discussed.Comment: RevTeX, 4 pages, 4 figure
- …
