24,376 research outputs found

    Fluctuations in Shear-Jammed States: A Statistical Ensemble Approach

    Full text link
    Granular matter exists out of thermal equilibrium, i.e. it is athermal. While conventional equilibrium statistical mechanics is not useful for characterizing granular materials, the idea of constructing a statistical ensemble analogous to its equilibrium counterpart to describe static granular matter was proposed by Edwards and Oakshott more than two decades ago. Recent years have seen several implementations of this idea. One of these is the stress ensemble, which is based on properties of the force moment tensor, and applies to frictional and frictionless grains. We demonstrate the full utility of this statistical framework in shear jammed (SJ) experimental states [1,2], a special class of granular solids created by pure shear, which is a strictly non-equilbrium protocol for creating solids. We demonstrate that the stress ensemble provides an excellent quantitative description of fluctuations in experimental SJ states. We show that the stress fluctuations are controlled by a single tensorial quantity: the angoricity of the system, which is a direct analog of the thermodynamic temperature. SJ states exhibit significant correlations in local stresses and are thus inherently different from density-driven, isotropically jammed (IJ) states.Comment: 6 pages, 4 figure

    Shear-induced rigidity of frictional particles: Analysis of emergent order in stress space

    Full text link
    Solids are distinguished from fluids by their ability to resist shear. In traditional solids, the resistance to shear is associated with the emergence of broken translational symmetry as exhibited by a non-uniform density pattern, which results from either minimizing the energy cost or maximizing the entropy or both. In this work, we focus on a class of systems, where this paradigm is challenged. We show that shear-driven jamming in dry granular materials is a collective process controlled solely by the constraints of mechanical equilibrium. We argue that these constraints lead to a broken translational symmetry in a dual space that encodes the statistics of contact forces and the topology of the contact network. The shear-jamming transition is marked by the appearance of this broken symmetry. We extend our earlier work, by comparing and contrasting real space measures of rheology with those obtained from the dual space. We investigate the structure and behavior of the dual space as the system evolves through the rigidity transition in two different shear protocols. We analyze the robustness of the shear-jamming scenario with respect to protocol and packing fraction, and demonstrate that it is possible to define a protocol-independent order parameter in this dual space, which signals the onset of rigidity.Comment: 14 pages, 17 figure

    The Low Column Density Lyman-alpha Forest

    Get PDF
    We develop an analytical method based on the lognormal approximation to compute the column density distribution of the Lyman-alpha forest in the low column density limit. We compute the column density distributions for six different cosmological models and found that the standard, COBE-normalized CDM model cannot fit the observations of the Lyman-alpha forest at z=3. The amplitude of the fluctuations in that model has to be lowered by a factor of almost 3 to match observations. However, the currently viable cosmological models like the lightly tilted COBE-normalized CDM+Lambda model, the CHDM model with 20% neutrinos, and the low-amplitude Standard CDM model are all in agreement with observations, to within the accuracy of our approximation, for the value of the cosmological baryon density at or higher than the old Standard Bing Bang Nucleosynthesis value of 0.0125 for the currently favored value of the ionizing radiation intensity. With the low value for the baryon density inferred by Hogan & Rugers (1996), the models can only marginally match observations.Comment: three postscript figures included, submitted to ApJ

    Difference of optical conductivity between one- and two-dimensional doped nickelates

    Full text link
    We study the optical conductivity in doped nickelates, and find the dramatic difference of the spectrum in the gap (ω\omega\alt4 eV) between one- (1D) and two-dimensional (2D) nickelates. The difference is shown to be caused by the dependence of hopping integral on dimensionality. The theoretical results explain consistently the experimental data in 1D and 2D nickelates, Y2x_{2-x}Cax_xBaNiO5_5 and La2x_{2-x}Srx_xNiO4_4, respectively. The relation between the spectrum in the X-ray aborption experiments and the optical conductivity in La2x_{2-x}Srx_xNiO4_4 is discussed.Comment: RevTeX, 4 pages, 4 figure
    corecore