1,330 research outputs found

    Modeling Space-Charge Limited Currents in Organic Semiconductors: Extracting Trap Density and Mobility

    Full text link
    We have developed and applied a mobility edge model that takes into account drift and diffusion currents to characterize the space charge limited current in organic semiconductors. The numerical solution of the drift-diffusion equation allows the utilization of asymmetric contacts to describe the built-in potential within the device. The model has been applied to extract information of the distribution of traps from experimental current-voltage measurements of a rubrene single crystal from Krellner et al. [Phys. Rev. B, 75(24), 245115] showing excellent agreement across several orders of magnitude of current. Although the two contacts are made of the same metal, an energy offset of 580 meV between them, ascribed to differences in the deposition techniques (lamination vs. evaporation) was essential to correctly interpret the shape of the current-voltage characteristics at low voltage. A band mobility 0.13 cm2/Vs for holes was estimated, which is consistent with transport along the long axis of the orthorhombic unit cell. The total density of traps deeper than 0.1 eV was 2.2\times1016 cm-3. The sensitivity analysis and error estimation in the obtained parameters shows that it is not possible to accurately resolve the shape of the trap distribution for energies deeper than 0.3 eV or shallower than 0.1 eV above the valence band edge. The total number of traps deeper than 0.3 eV however can be estimated. Contact asymmetry and the diffusion component of the current play an important role in the description of the device at low bias, and are required to obtain reliable information about the distribution of deep traps

    The Precision Determination of Invisible-Particle Masses at the LHC

    Full text link
    We develop techniques to determine the mass scale of invisible particles pair-produced at hadron colliders. We employ the constrained mass variable m_2C, which provides an event-by-event lower-bound to the mass scale given a mass difference. We complement this variable with a new variable m_2C,UB which provides an additional upper bound to the mass scale, and demonstrate its utility with a realistic case study of a supersymmetry model. These variables together effectively quantify the `kink' in the function Max m_T2 which has been proposed as a mass-determination technique for collider-produced dark matter. An important advantage of the m_2C method is that it does not rely simply on the position at the endpoint, but it uses the additional information contained in events which lie far from the endpoint. We found the mass by comparing the HERWIG generated m_2C distribution to ideal distributions for different masses. We find that for the case studied, with 100 fb^-1 of integrated luminosity (about 400 signal events), the invisible particle's mass can be measured to a precision of 4.1 GeV. We conclude that this technique's precision and accuracy is as good as, if not better than, the best known techniques for invisible-particle mass-determination at hadron colliders.Comment: 20 pages, 11 figures, minor correction

    A new Skyrme interaction with improved spin-isospin properties

    Get PDF
    A correct determination of the spin-isospin properties of the nuclear effective interaction should lead, among other improvements, to an accurate description of the Gamow-Teller Resonance (GTR). These nuclear excitations impact on a variety of physical processes: from the response in charge-exchange reactions of nuclei naturally present in the Earth, to the description of the stellar nucleosynthesis, and of the pre-supernova explosion core-collapse evolution of massive stars in the Universe. A reliable description of the GTR provides also stringent tests for neutrinoless double-β\beta decay calculations. We present a new Skyrme interaction as accurate as previous forces in the description of finite nuclei and of uniform matter properties around saturation density, and that account well for the GTR in 48{}^{48}Ca, 90{}^{90}Zr and 208{}^{208}Pb, the Isobaric Analog Resonance and the Spin Dipole Resonance in 90{}^{90}Zr and 208{}^{208}Pb.Comment: Predictions on the IAR and SDR and comparison with the SGII interaction for the GTRs where adde

    Enhanced material defect imaging with a radio-frequency atomic magnetometer

    Get PDF
    Imaging of structural defects in a material can be realized with a radio-frequency atomic magnetometer by monitoring the material’s response to a radio-frequency excitation field. We demonstrate two measurement configurations that enable the increase of the amplitude and phase contrast in images that represent a structural defect in electrically conductive and magnetically permeable samples. Both concepts involve the elimination of the excitation field component, orthogonal to the sample surface, from the atomic magnetometer signal. The first method relies on the implementation of a set of coils that directly compensates the excitation field component in the magnetometer signal. The second takes advantage of the fact that the radio-frequency magnetometer is not sensitive to the magnetic field oscillating along one of its axes. Results from simple modelling confirm the experimental observation and are discussed in detail

    Inductive imaging of the concealed defects with radio-frequency atomic magnetometers

    Get PDF
    We explore the capabilities of the radio-frequency atomic magnetometers in the non-destructive detection of concealed defects. We present results from the systematic magnetic inductive measurement of various defect types in an electrically conductive object at different rf field frequencies (0.4–12 kHz) that indicate the presence of an optimum operational frequency of the sensor. The optimum in the frequency dependence of the amplitude/phase contrast for defects under a 0.5–1.5 mm conductive barrier was observed within the 1–2 kHz frequency range. The experiments are performed in the self-compensated configuration that automatically removes the background signal created by the rf field producing object response

    Global Analysis of Nucleon Strange Form Factors at Low Q2Q^2

    Get PDF
    We perform a global analysis of all recent experimental data from elastic parity-violating electron scattering at low Q2Q^2. The values of the electric and magnetic strange form factors of the nucleon are determined at Q2=0.1Q^2 = 0.1 GeV/c2c^2 to be GEs=−0.008±0.016G^s_E = -0.008 \pm 0.016 and GMs=0.29±0.21G^s_M = 0.29 \pm 0.21.Comment: 8 pages, 1 figur

    Generation of atomic spin orientation with a linearly polarized beam in room-temperature alkali-metal vapor

    Get PDF
    Traditionally, atomic spin orientation is achieved by the transfer of angular momentum from polarized light to an atomic system. We demonstrate the mechanism of orientation generation in room-temperature caesium vapors that combines three elements: optical pumping, nonlinear spin dynamics, and spin-exchange collisions. Through the variation of the spin-exchange relaxation rate, the transition between an aligned and an oriented atomic sample is presented. The observation is performed by monitoring the atomic radio-frequency spectra. The measurement configuration discussed paves the way to simple and robust radio-frequency atomic magnetometers that are based on a single low-power laser diode that approach the performance of multilaser pump-probe systems

    Energy distribution and cooling of a single atom in an optical tweezer

    Full text link
    We investigate experimentally the energy distribution of a single rubidium atom trapped in a strongly focused dipole trap under various cooling regimes. Using two different methods to measure the mean energy of the atom, we show that the energy distribution of the radiatively cooled atom is close to thermal. We then demonstrate how to reduce the energy of the single atom, first by adiabatic cooling, and then by truncating the Boltzmann distribution of the single atom. This provides a non-deterministic way to prepare atoms at low microKelvin temperatures, close to the ground state of the trapping potential.Comment: 9 pages, 6 figures, published in PR
    • …
    corecore