262 research outputs found

    Elastic response of a nematic liquid crystal to an immersed nanowire

    Full text link
    We study the immersion of a ferromagnetic nanowire within a nematic liquid crystal using a lattice Boltzmann algorithm to solve the full three-dimensional equations of hydrodynamics. We present an algorithm for including a moving boundary, to simulate a nanowire, in a lattice Boltzmann simulation. The nematic imposes a torque on a wire that increases linearly with the angle between the wire and the equilibrium direction of the director field. By rotation of these nanowires, one can determine the elastic constants of the nematic.Comment: 10 pages, 8 figure

    Stabilising the Blue Phases

    Full text link
    We present an investigation of the phase diagram of cholesteric liquid crystals within the framework of Landau - de Gennes theory. The free energy is modified to incorporate all three Frank elastic constants and to allow for a temperature dependent pitch in the cholesteric phase. It is found that the region of stability of the cubic blue phases depends significantly on the value of the elastic constants, being reduced when the bend elastic constant is larger than splay and when twist is smaller than the other two. Most dramatically we find a large increase in the region of stability of blue phase I, and a qualitative change in the phase diagram, in a system where the cholesteric phase displays helix inversion.Comment: 15 pages, 6 figure

    Rheology of distorted nematic liquid crystals

    Full text link
    We use lattice Boltzmann simulations of the Beris--Edwards formulation of nematodynamics to probe the response of a nematic liquid crystal with conflicting anchoring at the boundaries under shear and Poiseuille flow. The geometry we focus on is that of the hybrid aligned nematic (HAN) cell, common in devices. In the nematic phase, backflow effects resulting from the elastic distortion in the director field render the velocity profile strongly non-Newtonian and asymmetric. As the transition to the isotropic phase is approached, these effects become progressively weaker. If the fluid is heated just above the transition point, however, another asymmetry appears, in the dynamics of shear band formation.Comment: 7 pages, 4 figures. Accepted for publication in Europhys. Let

    Drag Reduction by Polymers in Wall Bounded Turbulence

    Full text link
    We address the mechanism of drag reduction by polymers in turbulent wall bounded flows. On the basis of the equations of fluid mechanics we present a quantitative derivation of the "maximum drag reduction (MDR) asymptote" which is the maximum drag reduction attained by polymers. Based on Newtonian information only we prove the existence of drag reduction, and with one experimental parameter we reach a quantitative agreement with the experimental measurements.Comment: 4 pages, 1 fig., included, PRL, submitte

    The geometry and thermodynamics of dissipative quantum systems

    Full text link
    Dirac's method of classical analogy is employed to incorporate quantum degrees of freedom into modern nonequilibrium thermodynamics. The proposed formulation of dissipative quantum mechanics builds entirely upon the geometric structures implied by commutators and canonical correlations. A lucid formulation of a nonlinear quantum master equation follows from the thermodynamic structure. Complex classical environments with internal structure can be handled readily.Comment: 4 pages, definitely no figure

    Perioperative anaemia management: consensus statement on the role of intravenous iron

    Get PDF
    A multidisciplinary panel of physicians was convened by Network for Advancement of Transfusion Alternatives to review the evidence on the efficacy and safety of i.v. iron administration to increase haemoglobin levels and reduce blood transfusion in patients undergoing surgery, and to develop a consensus statement on perioperative use of i.v. iron as a transfusion alternative. After conducting a systematic literature search to identify the relevant studies, critical evaluation of the evidence was performed and recommendations formulated using the Grades of Recommendation Assessment, Development and Evaluation Working Group methodology. Two randomized controlled trials (RCTs) and six observational studies in orthopaedic and cardiac surgery were evaluated. Overall, there was little benefit found for the use of i.v. iron. At best, i.v. iron supplementation was found to reduce the proportion of patients requiring transfusions and the number of transfused units in observational studies in orthopaedic surgery but not in cardiac surgery. The two RCTs had serious limitations and the six observational limited by the selection of the control groups. Thus, the quality of the available evidence is considered moderate to very low. For patients undergoing orthopaedic surgery and expected to develop severe postoperative anaemia, the panel suggests i.v. iron administration during the perioperative period (weak recommendation based on moderate/low-quality evidence). For all other types of surgery, no evidence-based recommendation can be made. The panel recommends that large, prospective, RCTs be undertaken to evaluate the efficacy and safety of i.v. iron administration in surgical patients. The implementation of some general good practice points is suggeste

    Steady-state hydrodynamic instabilities of active liquid crystals: Hybrid lattice Boltzmann simulations

    Full text link
    We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently ``extensile'' rods, in the case of flow-aligning liquid crystals, and for sufficiently ``contractile'' ones for flow-tumbling materials. In a quasi-1D geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, re-arrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of ``convection rolls''. These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behaviour of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behaviour of active nematics.Comment: 18 eps figures, accepted for publication in Phys. Rev.

    Lattice Boltzmann Simulations of Liquid Crystal Hydrodynamics

    Full text link
    We describe a lattice Boltzmann algorithm to simulate liquid crystal hydrodynamics. The equations of motion are written in terms of a tensor order parameter. This allows both the isotropic and the nematic phases to be considered. Backflow effects and the hydrodynamics of topological defects are naturally included in the simulations, as are viscoelastic properties such as shear-thinning and shear-banding.Comment: 14 pages, 5 figures, Revte

    Interfacial motion in flexo- and order-electric switching between nematic filled states

    Full text link
    We consider a nematic liquid crystal, in coexistence with its isotropic phase, in contact with a substrate patterned with rectangular grooves. In such a system, the nematic phase may fill the grooves without the occurrence of complete wetting. There may exist multiple (meta)stable filled states, each characterised by the type of distortion (bend or splay) in each corner of the groove and by the shape of the nematic-isotropic interface, and additionally the plateaux that separate the grooves may be either dry or wet with a thin layer of nematic. Using numerical simulations, we analyse the dynamical response of the system to an externally- applied electric field, with the aim of identifying switching transitions between these filled states. We find that order-electric coupling between the fluid and the field provides a means of switching between states where the plateaux between grooves are dry and states where they are wet by a nematic layer, without affecting the configuration of the nematic within the groove. We find that flexoelectric coupling may change the nematic texture in the groove, provided that the flexoelectric coupling differentiates between the types of distortion at the corners of the substrate. We identify intermediate stages of the transitions, and the role played by the motion of the nematic-isotropic interface. We determine quantitatively the field magnitudes and orientations required to effect each type of transition.Comment: 14 pages, 12 fig

    Twist-induced crossover from two-dimensional to three-dimensional turbulence in active nematics

    Get PDF
    While studies of active nematics in two dimensions have shed light on various aspects of the flow regimes and topology of active matter, three-dimensional properties of topological defects and chaotic flows remain unexplored. By confining a film of active nematics between two parallel plates, we use continuum simulations and analytical arguments to demonstrate that the crossover from quasi-2D to 3D chaotic flows is controlled by the morphology of the disclination lines. For small plate separations, the active nematic behaves as a quasi-2D material, with straight topological disclination lines spanning the height of the channel and exhibiting effectively 2D active turbulence. Upon increasing channel height, we find a crossover to 3D chaotic flows due to the contortion of disclinations above a critical activity. We further show that these contortions are engendered by twist perturbations producing a sharp change in the curvature of disclinations.Comment: Accepted for PRE Rapid Communication
    • …
    corecore