41 research outputs found

    Mapping flow velocity in the human retinal capillary network with pixel intensity cross correlation

    Get PDF
    We present a new method for determining cellular velocity in the smallest retinal vascular networks as visualized with adaptive optics. The method operates by comparing the intensity profile of each movie pixel with that of every other pixel, after shifting in time by one frame. The time-shifted pixel which most resembles the reference pixel is deemed to be a 'source' or 'destination' of flow information for that pixel. Velocity in the transverse direction is then calculated by dividing the spatial displacement between the two pixels by the inter-frame period. We call this method pixel intensity cross-correlation, or "PIX". Here we compare measurements derived from PIX to two other state-of-the-art algorithms (particle image velocimetry and the spatiotemporal kymograph), as well as to manually tracked cell data. The examples chosen highlight the potential of the new algorithm to substantially improve spatial and temporal resolution, resilience to noise and aliasing, and assessment of network flow properties compared with existing methods

    Direct visualization and characterization of erythrocyte flow in human retinal capillaries

    Get PDF
    Imaging the retinal vasculature offers a surrogate view of systemic vascular health, allowing noninvasive and longitudinal assessment of vascular pathology. The earliest anomalies in vascular disease arise in the microvasculature, however current imaging methods lack the spatiotemporal resolution to track blood flow at the capillary level. We report here on novel imaging technology that allows direct, noninvasive optical imaging of erythrocyte flow in human retinal capillaries. This was made possible using adaptive optics for high spatial resolution (1.5 μm), sCMOS camera technology for high temporal resolution (460 fps), and tunable wavebands from a broadband laser for maximal erythrocyte contrast. Particle image velocimetry on our data sequences was used to quantify flow. We observed marked spatiotemporal variability in velocity, which ranged from 0.3 to 3.3 mm/s, and changed by up to a factor of 4 in a given capillary during the 130 ms imaging period. Both mean and standard deviation across the imaged capillary network varied markedly with time, yet their ratio remained a relatively constant parameter (0.50 ± 0.056). Our observations concur with previous work using less direct methods, validating this as an investigative tool for the study of microvascular disease in humans

    Are you sure? The relationship between response certainty and performance in visual detection using a perimetry-style task

    Get PDF
    Conventional psychophysical methods ignore the degree of confidence associated with each response. We compared the psychometric function for detection with that for "absolute certainty" in a perimetry-style task, to explore how knowledge of response certainty might aid the estimation of detection thresholds. Five healthy subjects performed a temporal 2-AFC detection task, indicating on each trial whether they were "absolutely certain." The method of constant stimuli was used to characterize the shape of the two psychometric functions. Four eccentricities spanning central and peripheral vision were tested. Where possible, conditions approximated those of the Humphrey Field Analyzer (spot size, duration, background luminance, test locations). Based on the empirical data, adaptive runs (ZEST) were simulated to predict the likely improvement in efficiency obtained by collecting certainty information. Compared to detection, threshold for certainty was 0.5 to 1.0 dB worse, and slope was indistinguishable across all eccentricities tested. A simple two-stage model explained the threshold difference; under this model, psychometric functions for detection and for certainty-given-detection are the same. Exploiting this equivalence is predicted to reduce the number of trials required to achieve a given level of accuracy by approximately 30% to 40%. The chances of detecting a spot and the chances of certainty-given-detection were approximately the same in young, healthy subjects. This means, for example, that a spot detected at threshold was labeled as "certainly" detected approximately half the time. The collection of certainty information could be used to improve the efficiency of estimation of detection thresholds

    Improving high resolution retinal image quality using speckle illumination HiLo imaging

    Get PDF
    Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood illumination microscopes and produce pseudo-confocal images with significantly improved image quality. In this work, we adopted the HiLo technique to a flood AO ophthalmoscope and performed AO imaging in both (physical) model and live rat eyes. The improvement in image quality from HiLo imaging is shown both qualitatively and quantitatively by using spatial spectral analysis

    Limitations to adaptive optics image quality in rodent eyes

    Get PDF
    Adaptive optics (AO) retinal image quality of rodent eyes is inferior to that of human eyes, despite the promise of greater numerical aperture. This paradox challenges several assumptions commonly made in AO imaging, assumptions which may be invalidated by the very high power and dioptric thickness of the rodent retina. We used optical modeling to compare the performance of rat and human eyes under conditions that tested the validity of these assumptions. Results showed that AO image quality in the human eye is robust to positioning errors of the AO corrector and to differences in imaging depth and wavelength compared to the wavefront beacon. In contrast, image quality in the rat eye declines sharply with each of these manipulations, especially when imaging off-axis. However, some latitude does exist to offset these manipulations against each other to produce good image quality

    Automatic identification of the temporal retinal nerve fiber raphe from macular cube data

    Get PDF
    We evaluated several approaches for automatic location of the temporal nerve fiber raphe from standard macular cubes acquired on a Heidelberg Spectralis OCT. Macular cubes with B-scan separation of 96-122 µm were acquired from 15 healthy participants, and "high density" cubes with scan separation of 11 µm were acquired from the same eyes. These latter scans were assigned to experienced graders for subjective location of the raphe, providing the ground truth by which to compare methods operating on the lower density data. A variety of OCT scan parameters and image processing strategies were trialed. Vertically oriented scans, purposeful misalignment of the pupil to avoid reflective artifacts, and the use of intensity as opposed to thickness of the nerve fiber layer were all critical to minimize error. The best performing approach "cFan" involved projection of a fan of lines from each of several locations across the foveal pit; in each fan the line of least average intensity was identified. The centroid of the crossing points of these lines provided the raphe orientation with an average error of 1.5° (max = 4.1°) relative to the human graders. The disc-fovea-raphe angle was 172.4 ± 2.3° (range = 168.5-176.2°), which agrees well with other published estimates

    Orientation of the Temporal Nerve Fiber Raphe in Healthy and in Glaucomatous Eyes

    Get PDF
    Purpose: To determine the normal variation in orientation of the temporal nerve fiber raphe, and the accuracy with which it may be predicted or approximated in lieu of direct measurement. Methods: We previously described an algorithm for automatic measurement of raphe orientation from optical coherence tomography, using the intensity of vertically oriented macular cubes. Here this method was applied in 49 healthy participants (age 19-81 years) and 51 participants with primary open angle glaucoma (age 51-80 years). Results: Mean fovea-disc-raphe angle was 173.5° ± 3.2° (range = 166°-182°) and 174.2° ± 3.4° (range = 166°-184°) in healthy and glaucoma patients, respectively. Differences between groups were not significant. Fovea-disc-raphe angle was not correlated with age or axial length (P > 0.4), showed some symmetry between eyes in glaucoma (R2 = 0.31, P < 0.001), and little symmetry in the healthy group (P = 0.06). Fovea-disc angle was correlated with fovea-raphe angle (R2 = 0.27, P = 0.0001), but was not a good predictor for raphe orientation (average error = 6.8°). The horizontal axis was a better predictor (average error = 3.2°; maximum error = 9.6°), but still gave approximately twice the error previously reported for direct measurement from macular cubes. Conclusions: There is substantial natural variation in temporal nerve fiber raphe orientation, which cannot be predicted from age, axial length, relative geometry of the disc and fovea, or the contralateral eye. For applications to which the orientation of the raphe is considered important, it should be measured directly
    corecore