897 research outputs found

    Strain and correlation of self-organized Ge_(1-x)Mn_x nanocolumns embedded in Ge (001)

    Full text link
    We report on the structural properties of Ge_(1-x)Mn_x layers grown by molecular beam epitaxy. In these layers, nanocolumns with a high Mn content are embedded in an almost-pure Ge matrix. We have used grazing-incidence X-ray scattering, atomic force and transmission electron microscopy to study the structural properties of the columns. We demonstrate how the elastic deformation of the matrix (as calculated using atomistic simulations) around the columns, as well as the average inter-column distance can account for the shape of the diffusion around Bragg peaks.Comment: 9 pages, 7 figure

    Structure and magnetism of self-organized Ge(1-x)Mn(x) nano-columns

    Get PDF
    We report on the structural and magnetic properties of thin Ge(1-x)Mn(x)films grown by molecular beam epitaxy (MBE) on Ge(001) substrates at temperatures (Tg) ranging from 80deg C to 200deg C, with average Mn contents between 1 % and 11 %. Their crystalline structure, morphology and composition have been investigated by transmission electron microscopy (TEM), electron energy loss spectroscopy and x-ray diffraction. In the whole range of growth temperatures and Mn concentrations, we observed the formation of manganese rich nanostructures embedded in a nearly pure germanium matrix. Growth temperature mostly determines the structural properties of Mn-rich nanostructures. For low growth temperatures (below 120deg C), we evidenced a two-dimensional spinodal decomposition resulting in the formation of vertical one-dimensional nanostructures (nanocolumns). Moreover we show in this paper the influence of growth parameters (Tg and Mn content) on this decomposition i.e. on nanocolumns size and density. For temperatures higher than 180deg C, we observed the formation of Ge3Mn5 clusters. For intermediate growth temperatures nanocolumns and nanoclusters coexist. Combining high resolution TEM and superconducting quantum interference device magnetometry, we could evidence at least four different magnetic phases in Ge(1-x)Mn(x) films: (i) paramagnetic diluted Mn atoms in the germanium matrix, (ii) superparamagnetic and ferromagnetic low-Tc nanocolumns (120 K 400 K) and (iv) Ge3Mn5 clusters.Comment: 10 pages 2 colonnes revTex formatte

    Exchange bias in GeMn nanocolumns: the role of surface oxidation

    Full text link
    We report on the exchange biasing of self-assembled ferromagnetic GeMn nanocolumns by GeMn-oxide caps. The x-ray absorption spectroscopy analysis of this surface oxide shows a multiplet fine structure that is typical of the Mn2+ valence state in MnO. A magnetization hysteresis shift |HE|~100 Oe and a coercivity enhancement of about 70 Oe have been obtained upon cooling (300-5 K) in a magnetic field as low as 0.25 T. This exchange bias is attributed to the interface coupling between the ferromagnetic nanocolumns and the antiferromagnetic MnO-like caps. The effect enhancement is achieved by depositing a MnO layer on the GeMn nanocolumns.Comment: 7 pages, 5 figure

    Electrical and thermal spin accumulation in germanium

    Full text link
    In this letter, we first show electrical spin injection in the germanium conduction band at room temperature and modulate the spin signal by applying a gate voltage to the channel. The corresponding signal modulation agrees well with the predictions of spin diffusion models. Then by setting a temperature gradient between germanium and the ferromagnet, we create a thermal spin accumulation in germanium without any tunnel charge current. We show that temperature gradients yield larger spin accumulations than pure electrical spin injection but, due to competing microscopic effects, the thermal spin accumulation in germanium remains surprisingly almost unchanged under the application of a gate voltage to the channel.Comment: 7 pages, 3 figure

    Crossover from spin accumulation into interface states to spin injection in the germanium conduction band

    Full text link
    Electrical spin injection into semiconductors paves the way for exploring new phenomena in the area of spin physics and new generations of spintronic devices. However the exact role of interface states in spin injection mechanism from a magnetic tunnel junction into a semiconductor is still under debate. In this letter, we demonstrate a clear transition from spin accumulation into interface states to spin injection in the conduction band of nn-Ge. We observe spin signal amplification at low temperature due to spin accumulation into interface states followed by a clear transition towards spin injection in the conduction band from 200 K up to room temperature. In this regime, the spin signal is reduced down to a value compatible with spin diffusion model. More interestingly, we demonstrate in this regime a significant modulation of the spin signal by spin pumping generated by ferromagnetic resonance and also by applying a back-gate voltage which are clear manifestations of spin current and accumulation in the germanium conduction band.Comment: 5 pages, 4 figure

    Multi-sulfonated ligands on gold nanoparticles as virucidal antiviral for Dengue virus

    Get PDF
    Dengue virus (DENV) causes 390 million infections per year. Infections can be asymptomatic or range from mild fever to severe haemorrhagic fever and shock syndrome. Currently, no effective antivirals or safe universal vaccine is available. In the present work we tested different gold nanoparticles (AuNP) coated with ligands ω-terminated with sugars bearing multiple sulfonate groups. We aimed to identify compounds with antiviral properties due to irreversible (virucidal) rather than reversible (virustatic) inhibition. The ligands varied in length, in number of sulfonated groups as well as their spatial orientation induced by the sugar head groups. We identified two candidates, a glucose- and a lactose-based ligand showing a low EC50 (effective concentration that inhibit 50% of the viral activity) for DENV-2 inhibition, moderate toxicity and a virucidal effect in hepatocytes with titre reduction of Median Tissue Culture Infectious Dose log10TCID50 2.5 and 3.1. Molecular docking simulations complemented the experimental findings suggesting a molecular rationale behind the binding between sulfonated head groups and DENV-2 envelope protein

    Protein interactions with piALU RNA indicates putative participation of retroRNA in the cell cycle, DNA repair and chromatin assembly

    Get PDF
    Recent analyses suggest that transposable element-derived transcripts are processed to yield a variety of small RNA species that play critical functional roles in gene regulation and chromatin organization as well as genome stability and maintenance. Here we report a mass spectrometry analysis of an RNA-affinity complex isolation using a piRNA homologous sequence derived from Alu retrotransposal RNA. Our data point to potential roles for piALU RNAs in DNA repair, cell cycle and chromatin regulations
    corecore