2,023 research outputs found

    Transport and dynamics on open quantum graphs

    Full text link
    We study the classical limit of quantum mechanics on graphs by introducing a Wigner function for graphs. The classical dynamics is compared to the quantum dynamics obtained from the propagator. In particular we consider extended open graphs whose classical dynamics generate a diffusion process. The transport properties of the classical system are revealed in the scattering resonances and in the time evolution of the quantum system.Comment: 42 pages, 13 figures, submitted to PR

    A Hebbian approach to complex network generation

    Full text link
    Through a redefinition of patterns in an Hopfield-like model, we introduce and develop an approach to model discrete systems made up of many, interacting components with inner degrees of freedom. Our approach clarifies the intrinsic connection between the kind of interactions among components and the emergent topology describing the system itself; also, it allows to effectively address the statistical mechanics on the resulting networks. Indeed, a wide class of analytically treatable, weighted random graphs with a tunable level of correlation can be recovered and controlled. We especially focus on the case of imitative couplings among components endowed with similar patterns (i.e. attributes), which, as we show, naturally and without any a-priori assumption, gives rise to small-world effects. We also solve the thermodynamics (at a replica symmetric level) by extending the double stochastic stability technique: free energy, self consistency relations and fluctuation analysis for a picture of criticality are obtained

    Log-periodic drift oscillations in self-similar billiards

    Full text link
    We study a particle moving at unit speed in a self-similar Lorentz billiard channel; the latter consists of an infinite sequence of cells which are identical in shape but growing exponentially in size, from left to right. We present numerical computation of the drift term in this system and establish the logarithmic periodicity of the corrections to the average drift

    Criticality in diluted ferromagnet

    Full text link
    We perform a detailed study of the critical behavior of the mean field diluted Ising ferromagnet by analytical and numerical tools. We obtain self-averaging for the magnetization and write down an expansion for the free energy close to the critical line. The scaling of the magnetization is also rigorously obtained and compared with extensive Monte Carlo simulations. We explain the transition from an ergodic region to a non trivial phase by commutativity breaking of the infinite volume limit and a suitable vanishing field. We find full agreement among theory, simulations and previous results.Comment: 23 pages, 3 figure

    Stochastic Stability: a Review and Some Perspectives

    Full text link
    A review of the stochastic stability property for the Gaussian spin glass models is presented and some perspectives discussed.Comment: 12 pages, typos corrected, references added. To appear in Journal of Statistical Physics, Special Issue for the 100th Statistical Mechanics Meetin

    Morphological variation of the newly confirmed population of the javelin sand boa, Eryx jaculus (Linnaeus, 1758) (Serpentes, erycidae) in Sicily, Italy

    Get PDF
    The presence of the Javelin sand boa in Sicily has recently been confirmed. Here the morphological characters and sexual dimorphism of the Sicilian population of Eryx jaculus are presented. Seven meristic and six metric characters in 96 specimens from Sicily were examined. The results show that tail length, snout-vent length, the distance between nostrils and the number of ventral and subcaudal scales are different between sexes. The characters found in the Sicilian population of the Javelin sand boa resemble those of the African population (ssp. jaculus) rather than the Eurasian population (ssp. turcicus), but biomolecular studies are necessary to understand its taxonomic identity

    Classical dynamics on graphs

    Full text link
    We consider the classical evolution of a particle on a graph by using a time-continuous Frobenius-Perron operator which generalizes previous propositions. In this way, the relaxation rates as well as the chaotic properties can be defined for the time-continuous classical dynamics on graphs. These properties are given as the zeros of some periodic-orbit zeta functions. We consider in detail the case of infinite periodic graphs where the particle undergoes a diffusion process. The infinite spatial extension is taken into account by Fourier transforms which decompose the observables and probability densities into sectors corresponding to different values of the wave number. The hydrodynamic modes of diffusion are studied by an eigenvalue problem of a Frobenius-Perron operator corresponding to a given sector. The diffusion coefficient is obtained from the hydrodynamic modes of diffusion and has the Green-Kubo form. Moreover, we study finite but large open graphs which converge to the infinite periodic graph when their size goes to infinity. The lifetime of the particle on the open graph is shown to correspond to the lifetime of a system which undergoes a diffusion process before it escapes.Comment: 42 pages and 8 figure
    • …
    corecore