2,023 research outputs found
Transport and dynamics on open quantum graphs
We study the classical limit of quantum mechanics on graphs by introducing a
Wigner function for graphs. The classical dynamics is compared to the quantum
dynamics obtained from the propagator. In particular we consider extended open
graphs whose classical dynamics generate a diffusion process. The transport
properties of the classical system are revealed in the scattering resonances
and in the time evolution of the quantum system.Comment: 42 pages, 13 figures, submitted to PR
A Hebbian approach to complex network generation
Through a redefinition of patterns in an Hopfield-like model, we introduce
and develop an approach to model discrete systems made up of many, interacting
components with inner degrees of freedom. Our approach clarifies the intrinsic
connection between the kind of interactions among components and the emergent
topology describing the system itself; also, it allows to effectively address
the statistical mechanics on the resulting networks. Indeed, a wide class of
analytically treatable, weighted random graphs with a tunable level of
correlation can be recovered and controlled. We especially focus on the case of
imitative couplings among components endowed with similar patterns (i.e.
attributes), which, as we show, naturally and without any a-priori assumption,
gives rise to small-world effects. We also solve the thermodynamics (at a
replica symmetric level) by extending the double stochastic stability
technique: free energy, self consistency relations and fluctuation analysis for
a picture of criticality are obtained
Log-periodic drift oscillations in self-similar billiards
We study a particle moving at unit speed in a self-similar Lorentz billiard
channel; the latter consists of an infinite sequence of cells which are
identical in shape but growing exponentially in size, from left to right. We
present numerical computation of the drift term in this system and establish
the logarithmic periodicity of the corrections to the average drift
Criticality in diluted ferromagnet
We perform a detailed study of the critical behavior of the mean field
diluted Ising ferromagnet by analytical and numerical tools. We obtain
self-averaging for the magnetization and write down an expansion for the free
energy close to the critical line. The scaling of the magnetization is also
rigorously obtained and compared with extensive Monte Carlo simulations. We
explain the transition from an ergodic region to a non trivial phase by
commutativity breaking of the infinite volume limit and a suitable vanishing
field. We find full agreement among theory, simulations and previous results.Comment: 23 pages, 3 figure
Stochastic Stability: a Review and Some Perspectives
A review of the stochastic stability property for the Gaussian spin glass
models is presented and some perspectives discussed.Comment: 12 pages, typos corrected, references added. To appear in Journal of
Statistical Physics, Special Issue for the 100th Statistical Mechanics
Meetin
Morphological variation of the newly confirmed population of the javelin sand boa, Eryx jaculus (Linnaeus, 1758) (Serpentes, erycidae) in Sicily, Italy
The presence of the Javelin sand boa in Sicily has recently been confirmed. Here the morphological characters and sexual dimorphism of the Sicilian population of Eryx jaculus are presented. Seven meristic and six metric characters in 96 specimens from Sicily were examined. The results show that tail length, snout-vent length, the distance between nostrils and the number of ventral and subcaudal scales are different between sexes. The characters found in the Sicilian population of the Javelin sand boa resemble those of the African population (ssp. jaculus) rather than the Eurasian population (ssp. turcicus), but biomolecular studies are necessary to understand its taxonomic identity
Classical dynamics on graphs
We consider the classical evolution of a particle on a graph by using a
time-continuous Frobenius-Perron operator which generalizes previous
propositions. In this way, the relaxation rates as well as the chaotic
properties can be defined for the time-continuous classical dynamics on graphs.
These properties are given as the zeros of some periodic-orbit zeta functions.
We consider in detail the case of infinite periodic graphs where the particle
undergoes a diffusion process. The infinite spatial extension is taken into
account by Fourier transforms which decompose the observables and probability
densities into sectors corresponding to different values of the wave number.
The hydrodynamic modes of diffusion are studied by an eigenvalue problem of a
Frobenius-Perron operator corresponding to a given sector. The diffusion
coefficient is obtained from the hydrodynamic modes of diffusion and has the
Green-Kubo form. Moreover, we study finite but large open graphs which converge
to the infinite periodic graph when their size goes to infinity. The lifetime
of the particle on the open graph is shown to correspond to the lifetime of a
system which undergoes a diffusion process before it escapes.Comment: 42 pages and 8 figure
- …