5,850 research outputs found
Industrial Clustering and the Returns to Inventive Activity Canadian Biotechnology Firms, 1991-2000
We examine how industrial clustering affects biotechnology firms’ innovativeness, contrasting similar firms not located in clusters or located in clusters that are or are not focused on the firm’s technological specialization. Using detailed firm level data, we find clustered firms are eight times more innovative than geographically remote firms, with largest effects for firms located in clusters strong in their own specialization. For firms located in a cluster strong in their specialization we also find that R&D productivity is enhanced by a firm’s own R&D alliances and also by the R&D alliances of other colocated firms.Biotechnology, industrial clustering, knowledge spillovers, R&D productivity, strategic alliances
Spectral Polarization and Spectral Phase Control of Time and Energy Entangled Photons
We demonstrate a scheme to spectrally manipulate a collinear, continuous
stream of time and energy entangled photons to generate beamlike,
bandwidth-limited fuxes of polarization-entangled photons with
nearly-degenerate wavelengths. Utilizing an ultrashort-pulse shaper to control
the spectral phase and polarization of the photon pairs, we tailor the shape of
the Hong-Ou-Mandel interference pattern, demonstrating the rules that govern
the dependence of this interference pattern on the spectral phases of the
photons. We then use the pulse shaper to generate all four polarization Bell
states. The singlet state generated by this scheme forms a very robust
decoherence-free subspace, extremely suitable for long distance fiber-optics
based quantum communication.Comment: 5 pages, 3 figure
Crystallization of the regulatory and effector domains of the key sporulation response regulator Spo0A
The key response-regulator gene of sporulation, spo0A, has been cloned from Bacillus stearothermophilus and the encoded protein purified. The DNA-binding and phospho-acceptor domains of Spo0A have been prepared by tryptic digestion of the intact protein and subsequently crystallized in forms suitable for X-ray crystallographic studies. The DNA-binding domain has been crystallized in two forms, one of which diffracts X-rays to beyond 2.5 Angstrom spacing. The crystals of the phospho-acceptor domain diffract X-rays beyond 2.0 Angstrom spacing using synchrotron radiation
Nonlinear interactions with an ultrahigh flux of broadband entangled photons
We experimentally demonstrate sum-frequency generation (SFG) with entangled
photon-pairs, generating as many as 40,000 SFG photons per second, visible even
to the naked eye. The nonclassical nature of the interaction is exhibited by a
linear intensity-dependence of the nonlinear process. The key element in our
scheme is the generation of an ultrahigh flux of entangled photons while
maintaining their nonclassical properties. This is made possible by generating
the down-converted photons as broadband as possible, orders of magnitude wider
than the pump. This approach is readily applicable for other nonlinear
interactions, and may be applicable for various quantum-measurement tasks.Comment: 4 pages, 2 figures, Accepted to Phys. Rev. Let
New Dependencies of Hierarchies in Polynomial Optimization
We compare four key hierarchies for solving Constrained Polynomial
Optimization Problems (CPOP): Sum of Squares (SOS), Sum of Diagonally Dominant
Polynomials (SDSOS), Sum of Nonnegative Circuits (SONC), and the Sherali Adams
(SA) hierarchies. We prove a collection of dependencies among these hierarchies
both for general CPOPs and for optimization problems on the Boolean hypercube.
Key results include for the general case that the SONC and SOS hierarchy are
polynomially incomparable, while SDSOS is contained in SONC. A direct
consequence is the non-existence of a Putinar-like Positivstellensatz for
SDSOS. On the Boolean hypercube, we show as a main result that Schm\"udgen-like
versions of the hierarchies SDSOS*, SONC*, and SA* are polynomially equivalent.
Moreover, we show that SA* is contained in any Schm\"udgen-like hierarchy that
provides a O(n) degree bound.Comment: 26 pages, 4 figure
Block Coordinate Descent for Sparse NMF
Nonnegative matrix factorization (NMF) has become a ubiquitous tool for data
analysis. An important variant is the sparse NMF problem which arises when we
explicitly require the learnt features to be sparse. A natural measure of
sparsity is the L norm, however its optimization is NP-hard. Mixed norms,
such as L/L measure, have been shown to model sparsity robustly, based
on intuitive attributes that such measures need to satisfy. This is in contrast
to computationally cheaper alternatives such as the plain L norm. However,
present algorithms designed for optimizing the mixed norm L/L are slow
and other formulations for sparse NMF have been proposed such as those based on
L and L norms. Our proposed algorithm allows us to solve the mixed norm
sparsity constraints while not sacrificing computation time. We present
experimental evidence on real-world datasets that shows our new algorithm
performs an order of magnitude faster compared to the current state-of-the-art
solvers optimizing the mixed norm and is suitable for large-scale datasets
Chiral crystals in strong-coupling lattice QCD at nonzero chemical potential
We study the effective action for strong-coupling lattice QCD with
one-component staggered fermions in the case of nonzero chemical potential and
zero temperature. The structure of this action suggests that at large chemical
potentials its ground state is a crystalline `chiral density wave' that
spontaneously breaks chiral symmetry and translation invariance. In mean-field
theory, on the other hand, we find that this state is unstable. We show that
lattice artifacts are partly responsible for this, and suggest that if this
phase exists in QCD, then finding it in Monte-Carlo simulations would require
simulating on relatively fine lattices. In particular, the baryon mass in
lattice units, m_B, should be considerably smaller than its strong-coupling
limit of m_B~3.Comment: 33 pages, 8 figure
Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics
We show that under variation of moduli fields the first law of black
hole thermodynamics becomes , where are the scalar charges. We also show
that the ADM mass is extremized at fixed , , when the moduli
fields take the fixed value which depend only on electric
and magnetic charges. It follows that the least mass of any black hole with
fixed conserved electric and magnetic charges is given by the mass of the
double-extreme black hole with these charges. Our work allows us to interpret
the previously established result that for all extreme black holes the moduli
fields at the horizon take a value depending only
on the electric and magnetic conserved charges: is such
that the scalar charges .Comment: 3 pages, no figures, more detailed versio
- …