234 research outputs found

    Instrumentation, Field Network And Process Automation for the LHC Cryogenic Line Tests

    Get PDF
    This paper describes the cryogenic control system and associated instrumentation of the test facility for 3 pre-series units of the LHC Cryogenic Distribution Line. For each unit, the process automation is based on a Programmable Logic Con-troller implementing more than 30 closed control loops and handling alarms, in-terlocks and overall process management. More than 160 sensors and actuators are distributed over 150 m on a Profibus DP/PA network. Parameterization, cali-bration and diagnosis are remotely available through the bus. Considering the diversity, amount and geographical distribution of the instru-mentation involved, this is a representative approach to the cryogenic control system for CERN's next accelerator

    Instrumentation, Field Network and Process Automation for the Cryogenic System of the LHC Test String

    Get PDF
    CERN is now setting up String 2, a full-size prototype of a regular cell of the LHC arc. It is composed of two quadrupole, six dipole magnets, and a separate cryogenic distribution line (QRL) for the supply and recovery of the cryogen. An electrical feed box (DFB), with up to 38 High Temperature Superconducting (HTS) leads, powers the magnets. About 700 sensors and actuators are distributed along four Profibus DP and two Profibus PA field buses. The process automation is handled by two controllers, running 126 Closed Control Loops (CCL). This paper describes the cryogenic control system, associated instrumentation, and their commissioning

    Discontinuous Transition from a Real Bound State to Virtual Bound State in a Mixed-Valence State of SmS

    Full text link
    Golden SmS is a paramagnetic, mixed-valence system with a pseudogap. With increasing pressure across a critical pressure Pc, the system undergoes a discontinuous transition into a metallic, anti-ferromagnetically ordered state. By using a combination of thermodynamic, transport, and magnetic measurements, we show that the pseudogap results from the formation of a local bound state with spin singlet. We further argue that the transition Pc is regarded as a transition from an insulating electron-hole gas to a Kondo metal, i.e., from a spatially bound state to a Kondo virtually bound state between 4f and conduction electrons.Comment: 5 pages, 5 figure

    Can Weakness in End-Range Plantar Flexion After Achilles Tendon Repair Be Prevented?

    Get PDF
    Background: Disproportionate end-range plantar flexion weakness, decreased passive stiffness, and inability to perform a heel rise on a decline after Achilles tendon repair are thought to reflect increased tendon compliance or tendon lengthening. Since this was first noted, we have performed stronger repairs and avoided stretching into dorsiflexion for the first 12 weeks after surgery. Hypothesis: Using stronger repairs and avoiding stretching into dorsiflexion would eliminate end-range plantar flexion weakness and normalize passive stiffness. Study Design: Case series; Level of evidence, 4. Methods: Achilles repairs with epitendinous augmentation were performed on 18 patients. Plantar flexion torque, dorsiflexion range of motion (ROM), passive joint stiffness, and standing single-legged heel rise on a decline were assessed at 43 ± 24 months after surgery (range, 9 months to 8 years). Maximum isometric plantar flexion torque was measured at 20° and 10° of dorsiflexion, neutral position, and 10° and 20° of plantar flexion. Passive dorsiflexion ROM was measured with a goniometer. Passive joint stiffness was computed from the increase in passive torque from 10° to 20° of dorsiflexion. Tendon thickness was measured by use of digital calipers. Plantar flexion electromyographic (EMG) data were recorded during strength and functional tests. Analysis of variance and chi-square tests were used to assess weakness and function. Results: Marked weakness was evident on the involved side at 20° of plantar flexion (deficit, 26% ± 18%; Conclusion: The use of stronger repair techniques and attempts to limit tendon elongation by avoiding dorsiflexion stretching did not eliminate weakness in end-range plantar flexion. EMG data confirmed that end-range weakness was not due to neural inhibition. Physiological changes that alter the force transmission capability of the healing tendon may be responsible for this continued impairment. This weakness has implications for high-demand jumping and sprinting after Achilles tendon repair

    Outcome of the Commissioning of the Readout and Actuation Channels for the Cryogenics of the LHC

    Get PDF
    The LHC is the largest cryogenic installation ever built. For its operation more than 14 000 sensors and actuators are required. The 27 km circumference of the accelerator is divided into 8 sectors: like for the rest of the hardware and in particular the cryogenics, the commissioning of the cryogenics instrumentation has been performed sector by secto

    Frozen spatial chaos induced by boundaries

    Get PDF
    We show that rather simple but non-trivial boundary conditions could induce the appearance of spatial chaos (that is stationary, stable, but spatially disordered configurations) in extended dynamical systems with very simple dynamics. We exemplify the phenomenon with a nonlinear reaction-diffusion equation in a two-dimensional undulated domain. Concepts from the theory of dynamical systems, and a transverse-single-mode approximation are used to describe the spatially chaotic structures.Comment: 9 pages, 6 figures, submitted for publication; for related work visit http://www.imedea.uib.es/~victo

    First Experience with the LHC Cryogenic Instrumentation

    Get PDF
    The LHC under commissioning at CERN will be the world's largest superconducting accelerator and therefore makes extensive use of cryogenic instruments. These instruments are installed in the tunnel and therefore have to withstand the LHC environment that imposes radiation-tolerant design and construction. Most of the instruments require individual calibration; some of them exhibit several variants as concerns measuring span; all relevant data are therefore stored in an Oracle® database. Those data are used for the various quality assurance procedures defined for installation and commissioning, as well as for generating tables used by the control system to configure automatically the input/output channels. This paper describes the commissioning of the sensors and the corresponding electronics, the first measurement results during the cool-down of one machine sector; it discusses the different encountered problems and their corresponding solutions

    Vectorial dissipative solitons in vertical-cavity surface-emitting Lasers with delays

    Full text link
    We show that the nonlinear polarization dynamics of a vertical-cavity surface-emitting laser placed into an external cavity leads to the formation of temporal vectorial dissipative solitons. These solitons arise as cycles in the polarization orientation, leaving the total intensity constant. When the cavity round-trip is much longer than their duration, several independent solitons as well as bound states (molecules) may be hosted in the cavity. All these solutions coexist together and with the background solution, i.e. the solution with zero soliton. The theoretical proof of localization is given by the analysis of the Floquet exponents. Finally, we reduce the dynamics to a single delayed equation for the polarization orientation allowing interpreting the vectorial solitons as polarization kinks.Comment: quasi final resubmission version, 12 pages, 9 figure
    • …
    corecore