8 research outputs found

    Reducing uncertainty in health-care resource allocation

    Get PDF
    A key task for health policymakers is to optimise the outcome of health care interventions. The pricing of a new generation of cancer drugs, in combination with limited health care resources, has highlighted the need for improved methodology to estimate outcomes of different treatment options. Here we introduce new general methodology, which for the first time employs continuous hazard functions for analysis of survival data. Access to continuous hazard functions allows more precise estimations of survival outcomes for different treatment options. We illustrate the methodology by calculating outcomes for adjuvant treatment of gastrointestinal stromal tumours with imatinib mesylate, which selectively inhibits the activity of a cancer-causing enzyme and is a hallmark representative for the new generation of cancer drugs. The calculations reveal that optimal drug pricing can generate all win situations that improve drug availability to patients, make the most of public expenditure on drugs and increase pharmaceutical company gross profits. The use of continuous hazard functions for analysis of survival data may reduce uncertainty in health care resource allocation, and the methodology can be used for drug price negotiations and to investigate health care intervention thresholds. Health policy makers, pharmaceutical industry, reimbursement authorities and insurance companies, as well as clinicians and patient organisations, should find the methodology useful

    Adjuvant imatinib treatment improves recurrence-free survival in patients with high-risk gastrointestinal stromal tumours (GIST)

    Get PDF
    Palliative imatinib treatment has dramatically improved survival in patients with malignant gastrointestinal stromal tumours, particularly in patients with tumours harbouring activating KIT mutations. To evaluate the effectiveness of adjuvant imatinib after radical surgery, a consecutive series of patients with high-risk tumours (n=23) was compared with historic controls (n=48) who were treated with surgery alone. The mean follow-up period was over 3 years in both groups. Only 1 out of 23 patients (4%) in the adjuvant treatment group developed recurrent disease compared to 32 out of 48 patients (67%) in the control group. This preliminary study indicates that 1 year of adjuvant treatment with imatinib dramatically improves recurrence-free survival. Confirmation of these findings awaits the results of ongoing randomised studies

    Anti-tumor effects of the Notch pathway in gastrointestinal stromal tumors

    No full text
    Gastrointestinal stromal tumors (GISTs) are driven by gain-of-function mutations of KIT or PDGFRa. The introduction of imatinib has significantly extended survival for patients. However, most patients develop resistances. Notch signaling is a conserved developmental pathway known to play a critical role in the development of several cancers, functioning as a tumor promoter or a tumor suppressor. Given that the normal progenitor cell for GIST, the interstitial cell of Cajal, has characteristics similar to those of cells of neuroendocrine origin, we hypothesized that Notch pathway impacts the biology of GIST cells. In this study, we retrovirally and pharmacologically manipulated the Notch pathway in human GIST cells. We also performed a retrospective analysis of a cohort on 15 primary tumors to determine the role of Hes1, a major target gene of Notch, as a prognostic marker for GIST. Constitutively, active intracellular domain of Notch1 (ICN1) expression potently induced growth arrest and downregulated KIT expression in vitro. Additionally, treatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid caused dose-dependent upregulation of Notch1 expression and a parallel decrease in viability in these cells. Retroviral silencing of downstream targets of Notch (dominant-negative Hes1) and pharmacological inhibition of Notch activation (γ-secretase inhibition) partially rescued GIST cells from suberoylanilide hydroxamic acid treatment. GIST patients with high Hes1 mRNA levels have a significantly longer relapse-free survival. These results identify a novel anti-tumor effect of Notch1 and cross talk between the Notch and KIT pathways. Thus, activation of this pathway by treatment with histone deacetylase inhibitors is an appealing potential therapeutic strategy for GISTs. Abbreviations: DMSO: dimethyl sulfoxide GFP: green fluorescent protein GIST: Gastrointestinal stromal tumors HDAC: histone deacetylase Hsp90, heat shock protein 90 ICC: interstitial cells of Cajal ICN: intracellular domain of Notch MAM: Mastermind like OS: overall survival PE: phycoerythrin RFS: relapse-free survival SAHA: suberoylanilide hydroxamic acid Précis: This study is the first report of the tumor suppressor effects of Notch pathway in gastrointestinal stromal tumors via a negative feedback with the oncogene KIT and may lead the development of new therapeutic strategies for GISTs patients

    The Scandinavian Sarcoma Group

    No full text
    corecore