9,397 research outputs found
Collective Motion of Polarized Dipolar Fermi Gases in the Hydrodynamic Regime
Recently, a seminal STIRAP experiment allowed the creation of 40K-87Rb
molecules in the rovibrational ground state [K.-K. Ni et al., Science 322, 231
(2008)]. In order to describe such a polarized dipolar Fermi gas in the
hydrodynamic regime, we work out a variational time-dependent Hartree-Fock
approach. With this we calculate dynamical properties of such a system as, for
instance, the frequencies of the low-lying excitations and the time-of-flight
expansion. We find that the dipole-dipole interaction induces anisotropic
breathing oscillations in momentum space. In addition, after release from the
trap, the momentum distribution becomes asymptotically isotropic, while the
particle density becomes anisotropic
Dynamical Formation of Disoriented Chiral Condensates
We study the dynamical formation of disoriented chiral condensates in very
high energy nucleus-nucleus collisions using Bjorken hydrodynamics and
relativistic nucleation theory. It is the dynamics of the first order
confinement phase transition which controls the evolution of the system. Every
bubble or fluctuation of the new, hadronic, phase obtains its own chiral
condensate with a probability determined by the Boltzmann weight of the finite
temperature effective potential of the linear sigma model. We evaluate domain
size and chiral angle distributions, which can be used as initial conditions
for the solution of semiclassical field equations.Comment: 17 pages, latex and 10 ps figures available at
http://www.nbi.dk/~vischer/dcc.htm
Properties of exotic matter for heavy ion searches
We examine the properties of both forms of strange matter, small lumps of strange quark matter (strangelets) and of strange hadronic matter (Metastable Exotic Multihypernuclear Objects: MEMOs) and their relevance for present and future heavy ion searches. The strong and weak decays are discussed separately to distinguish between long-lived and short-lived candidates where the former ones are detectable in present heavy ion experiments while the latter ones in future heavy ion experiments, respectively. We find some long-lived strangelet candidates which are highly negatively charged with a mass to charge ratio like a anti deuteron (M/Z 2) but masses of A=10 to 16. We predict also many short-lived candidates, both in quark and in hadronic form, which can be highly charged. Purely hyperonic nuclei like the (2 02 ) are bound and have a negative charge while carrying a positive baryon number. We demonstrate also that multiply charmed exotics (charmlets) might be bound and can be produced at future heavy ion colliders
A reduction principle for Fourier coefficients of automorphic forms
In this paper we analyze a general class of Fourier coefficients of
automorphic forms on reductive adelic groups
and their covers. We prove that any such
Fourier coefficient is expressible through integrals and sums involving
'Levi-distinguished' Fourier coefficients. By the latter we mean the class of
Fourier coefficients obtained by first taking the constant term along the
nilradical of a parabolic subgroup, and then further taking a Fourier
coefficient corresponding to a -distinguished nilpotent orbit in
the Levi quotient. In a follow-up paper we use this result to establish
explicit formulas for Fourier expansions of automorphic forms attached to
minimal and next-to-minimal representations of simply-laced reductive groups.Comment: 35 pages. v2: Extended results and paper split into two parts with
second part appearing soon. New title to reflect new focus of this part. v3:
Minor corrections and updated reference to the second part that has appeared
as arXiv:1908.08296. v4: Minor corrections and reformulation
Stripe sensor tomography
We introduce a general concept of tomographic imaging for the case of an imaging sensor that has a stripelike shape. We first show that there is no difference, in principle, between two-dimensional tomography using conventional electromagnetic or particle radiation and tomography where a stripe sensor is mechanically scanned over a sample at a sequence of different angles. For a single stripe detector imaging, linear motion and angular rotation are required. We experimentally demonstrate single stripe sensor imaging principle using an elongated inductive coil detector. By utilizing an array of parallel stripe sensors that can be individually addressed, two-dimensional imaging can be performed with rotation only, eliminating the requirement for linear motion, as we also experimentally demonstrate with parallel coil array. We conclude that imaging with a stripe-type sensor of particular width and thickness (where the width is much larger than the thickness) is resolution limited only by the thickness (smaller parameter) of the sensor. We give examples of multiple sensor families where this imaging technique may be beneficial such as magnetoresistive, inductive, superconducting quantum interference device, and Hall effect sensors, and, in particular, discuss the possibilities of the technique in the field of magnetic resonance imaging
Expansion of CORE-SINEs in the genome of the Tasmanian devil
Background: The genome of the carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii, Order: Dasyuromorphia), was sequenced in the hopes of finding a cure for or gaining a better understanding of the contagious devil facial tumor disease that is threatening the species’ survival. To better understand the Tasmanian devil genome, we screened it for transposable elements and investigated the dynamics of short interspersed element (SINE) retroposons.
Results: The temporal history of Tasmanian devil SINEs, elucidated using a transposition in transposition analysis, indicates that WSINE1, a CORE-SINE present in around 200,000 copies, is the most recently active element. Moreover, we discovered a new subtype of WSINE1 (WSINE1b) that comprises at least 90% of all Tasmanian devil WSINE1s. The frequencies of WSINE1 subtypes differ in the genomes of two of the other Australian marsupial orders. A co-segregation analysis indicated that at least 66 subfamilies of WSINE1 evolved during the evolution of Dasyuromorphia. Using a substitution rate derived from WSINE1 insertions, the ages of the subfamilies were estimated and correlated with a newly established phylogeny of Dasyuromorphia. Phylogenetic analyses and divergence time estimates of mitochondrial genome data indicate a rapid radiation of the Tasmanian devil and the closest relative the quolls (Dasyurus) around 14 million years ago.
Conclusions: The radiation and abundance of CORE-SINEs in marsupial genomes indicates that they may be a major player in the evolution of marsupials. It is evident that the early phases of evolution of the carnivorous marsupial order Dasyuromorphia was characterized by a burst of SINE activity. A correlation between a speciation event and a major burst of retroposon activity is for the first time shown in a marsupial genome
Waveguiding in planar photonic crystals
Photonic crystal planar circuits designed and fabricated in silicon on silicon dioxide are demonstrated. Our structures are based on two-dimensional confinement by photonic crystals in the plane of propagation, and total internal reflection to achieve confinement in the third dimension. These circuits are shown to guide light at 1550 nm around sharp corners where the radius of curvature is similar to the wavelength of light
- …
