1,455 research outputs found

    A Calogero-Sutherland Type Model For Branched Polymers

    Get PDF
    We show that a Calogero-Sutherland type model with anharmonic interactions of fourth and sixth orders leads to the matrix model corresponding to the branched polymers. We also show that by suitably modifying this model one can also obtain N-particle problems which are connected to matrix models corresponding to the pure gravity phase as well as corresponding to the transition point between the soap bubble and the branched polymer phase.Comment: 6 pages, no figure

    Methods for Generating Quasi-Exactly Solvable Potentials

    Get PDF
    We describe three different methods for generating quasi-exactly solvable potentials, for which a finite number of eigenstates are analytically known. The three methods are respectively based on (i) a polynomial ansatz for wave functions; (ii) point canonical transformations; (iii) supersymmetric quantum mechanics. The methods are rather general and give considerably richer results than those available in the current literature.Comment: 12 pages, LaTe

    One parameter family of Compacton Solutions in a class of Generalized Korteweg-DeVries Equations

    Full text link
    We study the generalized Korteweg-DeVries equations derivable from the Lagrangian: L(l,p)=∫(12φxφt−(φx)ll(l−1)+α(φx)p(φxx)2)dx, L(l,p) = \int \left( \frac{1}{2} \varphi_{x} \varphi_{t} - { {(\varphi_{x})^{l}} \over {l(l-1)}} + \alpha(\varphi_{x})^{p} (\varphi_{xx})^{2} \right) dx, where the usual fields u(x,t)u(x,t) of the generalized KdV equation are defined by u(x,t)=φx(x,t)u(x,t) = \varphi_{x}(x,t). For pp an arbitrary continuous parameter 0<p≤2,l=p+20< p \leq 2 ,l=p+2 we find compacton solutions to these equations which have the feature that their width is independent of the amplitude. This generalizes previous results which considered p=1,2p=1,2. For the exact compactons we find a relation between the energy, mass and velocity of the solitons. We show that this relationship can also be obtained using a variational method based on the principle of least action.Comment: Latex 4 pages and one figure available on reques

    Truncated Harmonic Osillator and Parasupersymmetric Quantum Mechanics

    Get PDF
    We discuss in detail the parasupersymmetric quantum mechanics of arbitrary order where the parasupersymmetry is between the normal bosons and those corresponding to the truncated harmonic oscillator. We show that even though the parasusy algebra is different from that of the usual parasusy quantum mechanics, still the consequences of the two are identical. We further show that the parasupersymmetric quantum mechanics of arbitrary order p can also be rewritten in terms of p supercharges (i.e. all of which obey Qi2=0Q_i^{2} = 0). However, the Hamiltonian cannot be expressed in a simple form in terms of the p supercharges except in a special case. A model of conformal parasupersymmetry is also discussed and it is shown that in this case, the p supercharges, the p conformal supercharges along with Hamiltonian H, conformal generator K and dilatation generator D form a closed algebra.Comment: 9 page

    Development of a scalable generic platform for adaptive optics real time control

    Full text link
    The main objective of the present project is to explore the viability of an adaptive optics control system based exclusively on Field Programmable Gate Arrays (FPGAs), making strong use of their parallel processing capability. In an Adaptive Optics (AO) system, the generation of the Deformable Mirror (DM) control voltages from the Wavefront Sensor (WFS) measurements is usually through the multiplication of the wavefront slopes with a predetermined reconstructor matrix. The ability to access several hundred hard multipliers and memories concurrently in an FPGA allows performance far beyond that of a modern CPU or GPU for tasks with a well defined structure such as Adaptive Optics control. The target of the current project is to generate a signal for a real time wavefront correction, from the signals coming from a Wavefront Sensor, wherein the system would be flexible to accommodate all the current Wavefront Sensing techniques and also the different methods which are used for wavefront compensation. The system should also accommodate for different data transmission protocols (like Ethernet, USB, IEEE 1394 etc.) for transmitting data to and from the FPGA device, thus providing a more flexible platform for Adaptive Optics control. Preliminary simulation results for the formulation of the platform, and a design of a fully scalable slope computer is presented.Comment: Paper presented as part of SPIE ICOP 2015 Conference Proceeding

    Spontaneous Symmetry Breaking and the Renormalization of the Chern-Simons Term

    Get PDF
    We calculate the one-loop perturbative correction to the coefficient of the \cs term in non-abelian gauge theory in the presence of Higgs fields, with a variety of symmetry-breaking structures. In the case of a residual U(1)U(1) symmetry, radiative corrections do not change the coefficient of the \cs term. In the case of an unbroken non-abelian subgroup, the coefficient of the relevant \cs term (suitably normalized) attains an integral correction, as required for consistency of the quantum theory. Interestingly, this coefficient arises purely from the unbroken non-abelian sector in question; the orthogonal sector makes no contribution. This implies that the coefficient of the \cs term is a discontinuous function over the phase diagram of the theory.Comment: Version to be published in Phys Lett B., minor additional change

    Multi-View Face Recognition From Single RGBD Models of the Faces

    Get PDF
    This work takes important steps towards solving the following problem of current interest: Assuming that each individual in a population can be modeled by a single frontal RGBD face image, is it possible to carry out face recognition for such a population using multiple 2D images captured from arbitrary viewpoints? Although the general problem as stated above is extremely challenging, it encompasses subproblems that can be addressed today. The subproblems addressed in this work relate to: (1) Generating a large set of viewpoint dependent face images from a single RGBD frontal image for each individual; (2) using hierarchical approaches based on view-partitioned subspaces to represent the training data; and (3) based on these hierarchical approaches, using a weighted voting algorithm to integrate the evidence collected from multiple images of the same face as recorded from different viewpoints. We evaluate our methods on three datasets: a dataset of 10 people that we created and two publicly available datasets which include a total of 48 people. In addition to providing important insights into the nature of this problem, our results show that we are able to successfully recognize faces with accuracies of 95% or higher, outperforming existing state-of-the-art face recognition approaches based on deep convolutional neural networks
    • …
    corecore