691 research outputs found

    Mixing-induced anisotropic correlations in molecular crystalline systems

    Full text link
    We investigate the structure of mixed thin films composed of pentacene (PEN) and diindenoperylene (DIP) using X-ray reflectivity and grazing incidence X-ray diffraction. For equimolar mixtures we observe vanishing in-plane order coexisting with an excellent out-of-plane order, a yet unreported disordering behavior in binary mixtures of organic semiconductors, which are crystalline in their pure form. One approach to rationalize our findings is to introduce an anisotropic interaction parameter in the framework of a mean field model. By comparing the structural properties with those of other mixed systems, we discuss the effects of sterical compatibility and chemical composition on the mixing behavior, which adds to the general understanding of interactions in molecular mixtures.Comment: 5 pages, 5 figures, accepted by Phys. Rev. Let

    Electron capture on iron group nuclei

    Get PDF
    We present Gamow-Teller strength distributions from shell model Monte Carlo studies of fp-shell nuclei that may play an important role in the pre-collapse evolution of supernovae. We then use these strength distributions to calculate the electron-capture cross sections and rates in the zero-momentum transfer limit. We also discuss the thermal behavior of the cross sections. We find large differences in these cross sections and rates when compared to the naive single-particle estimates. These differences need to be taken into account for improved modeling of the early stages of type II supernova evolution

    Gamow-Teller strength distributions in fp-shell nuclei

    Get PDF
    We use the shell model Monte Carlo method to calculate complete 0f1p-shell response functions for Gamow-Teller (GT) operators and obtain the corresponding strength distributions using a Maximum Entropy technique. The approach is validated against direct diagonalization for 48Ti. Calculated GT strength distributions agree well with data from (n,p) and (p,n) reactions for nuclei with A=48-64. We also calculate the temperature evolution of the GT+ distributions for representative nuclei and find that the GT+ distributions broaden and the centroids shift to lower energies with increasing temperature

    The Role of Electron Captures in Chandrasekhar Mass Models for Type Ia Supernovae

    Full text link
    The Chandrasekhar mass model for Type Ia Supernovae (SNe Ia) has received increasing support from recent comparisons of observations with light curve predictions and modeling of synthetic spectra. It explains SN Ia events via thermonuclear explosions of accreting white dwarfs in binary stellar systems, being caused by central carbon ignition when the white dwarf approaches the Chandrasekhar mass. As the electron gas in white dwarfs is degenerate, characterized by high Fermi energies for the high density regions in the center, electron capture on intermediate mass and Fe-group nuclei plays an important role in explosive burning. Electron capture affects the central electron fraction Y_e, which determines the composition of the ejecta from such explosions. Up to the present, astrophysical tabulations based on shell model matrix elements were only available for light nuclei in the sd-shell. Recently new Shell Model Monte Carlo (SMMC) and large-scale shell model diagonalization calculations have also been performed for pf-shell nuclei. These lead in general to a reduction of electron capture rates in comparison with previous, more phenomenological, approaches. Making use of these new shell model based rates, we present the first results for the composition of Fe-group nuclei produced in the central regions of SNe Ia and possible changes in the constraints on model parameters like ignition densities and burning front speeds.Comment: 26 pages, 8 figures, submitted to Ap

    Half-lives and pre-supernova weak interaction rates for nuclei away from the stability line

    Get PDF
    A detailed model for the calculation of beta decay rates of the fpfp shell nuclei for situations prevailing in pre-supernova and collapse phases of evolution of the core of massive stars leading to supernova explosion has been extended for electron-capture rates. It can also be used to determine the half-lives of neutron-rich nuclei in the fp/fpgfp/fpg shell. The model uses an averaged Gamow-Teller (GT) strength function. But it can also use the experimental log ft values and GT strength function from (n,p)(n,p) reaction studies wherever available. The calculated rate includes contributions from each of the low-lying excited states of the mother including some specific resonant states ("back resonance") having large GT matrix elements.Comment: 11 pages; Latex; no figs; version to appear in J. Phys.

    Localization of tenascin in human skin wounds

    Get PDF
    A total of 56 surgically treated human skin wounds with a wound age between 8h and 7 months were investigated. Tenascin was visualized by immunohistochemistry and appeared first in the wound area pericellularly around fibroblastic cells approximately 2 days after wounding. A network-like interstitial positive staining pattern was first detectable in 3-day-old skin wounds. In all wounds with an age of 5 days or more, intensive reactivity for tenascin could be observed in the lesional area (dermal-epidermal junction, wound edge, areas of bleeding). In wounds with an age of more than approximately 1.5 months no positive staining occurred in the scar tissue. In conclusion, for forensic purposes, positive staining for tenascin restricted to the pericellular area of fibroblastic cells indicates a wound age of at least 2 days. Network-like structures appear after approximately 3 days or more. Since tenascin seems to be regularly detectable in skin wounds older than 5 days, the lack of a positive reaction in a sufficient number of specimens indicates a wound age of less than 5 days. The lack of a positive reaction in the granulation tissue of wounds with advanced wound age indicates a survival time of more than about 1.5 months, but a positive staining in older wounds cannot be excluded

    Ground and excited states Gamow-Teller strength distributions of iron isotopes and associated capture rates for core-collapse simulations

    Full text link
    This paper reports on the microscopic calculation of ground and excited states Gamow-Teller (GT) strength distributions, both in the electron capture and electron decay direction, for 54,55,56^{54,55,56}Fe. The associated electron and positron capture rates for these isotopes of iron are also calculated in stellar matter. These calculations were recently introduced and this paper is a follow-up which discusses in detail the GT strength distributions and stellar capture rates of key iron isotopes. The calculations are performed within the framework of the proton-neutron quasiparticle random phase approximation (pn-QRPA) theory. The pn-QRPA theory allows a microscopic \textit{state-by-state} calculation of GT strength functions and stellar capture rates which greatly increases the reliability of the results. For the first time experimental deformation of nuclei are taken into account. In the core of massive stars isotopes of iron, 54,55,56^{54,55,56}Fe, are considered to be key players in decreasing the electron-to-baryon ratio (YeY_{e}) mainly via electron capture on these nuclide. The structure of the presupernova star is altered both by the changes in YeY_{e} and the entropy of the core material. Results are encouraging and are compared against measurements (where possible) and other calculations. The calculated electron capture rates are in overall good agreement with the shell model results. During the presupernova evolution of massive stars, from oxygen shell burning stages till around end of convective core silicon burning, the calculated electron capture rates on 54^{54}Fe are around three times bigger than the corresponding shell model rates. The calculated positron capture rates, however, are suppressed by two to five orders of magnitude.Comment: 18 pages, 12 figures, 10 table

    Missing and Quenched Gamow Teller Strength

    Full text link
    Gamow-Teller strength functions in full (pf)8(pf)^{8} spaces are calculated with sufficient accuracy to ensure that all the states in the resonance region have been populated. Many of the resulting peaks are weak enough to become unobservable. The quenching factor necessary to bring into agreement the low lying observed states with shell model predictions is shown to be due to nuclear correlations. To within experimental uncertainties it is the same that is found in one particle transfer and (e,e') reactions. Perfect consistency between the observed 48Ca(p,n)48Sc^{48}Ca(p,n)^{48}Sc peaks and the calculation is achieved by assuming an observation threshold of 0.75\% of the total strength, a value that seems typical in several experimentsComment: 11 pages, 6 figures avalaible upon request, RevTeX, FTUAM-94/0

    Better Junction Control with Bus Priority

    Get PDF
    The problem was to design a traffic light controller for a set of neigh- bouring junctions, which gives priority to incoming buses while ensuring a degree of fairness to the general traffic. The team has developed three complementary approaches, that present different strengths and weaknesses and might be applicable in different junction configurations or traffic conditions: 1. A continuous-variable, discrete-time optimisation approach for de- termining the fraction of green time to give to each arm of a junc- tion during the next traffic light cycle, in order to minimise total weighted squared vehicle waiting times, with more weight on buses than on cars. 2. A piece-wise linear ordinary differential equation model of queue length dynamics on a junction arm, based on flux of vehicles into and out of that arm. 3. Adiscrete-variable,discrete-timeMarkovDecisionProcessapproach. The state of the system is comprised of vehicle queue lengths and the junction’s current stage. The action is to stay in the current stage or move to the next stage. An optimal policy minimises long run expected discounted weighted delay

    Net neutrality discourses: comparing advocacy and regulatory arguments in the United States and the United Kingdom

    Get PDF
    Telecommunications policy issues rarely make news, much less mobilize thousands of people. Yet this has been occurring in the United States around efforts to introduce "Net neutrality" regulation. A similar grassroots mobilization has not developed in the United Kingdom or elsewhere in Europe. We develop a comparative analysis of U.S. and UK Net neutrality debates with an eye toward identifying the arguments for and against regulation, how those arguments differ between the countries, and what the implications of those differences are for the Internet. Drawing on mass media, advocacy, and regulatory discourses, we find that local regulatory precedents as well as cultural factors contribute to both agenda setting and framing of Net neutrality. The differences between national discourses provide a way to understand both the structural differences between regulatory cultures and the substantive differences between policy interpretations, both of which must be reconciled for the Internet to continue to thrive as a global medium
    corecore