618 research outputs found

    Verifying Safety Properties With the TLA+ Proof System

    Get PDF
    TLAPS, the TLA+ proof system, is a platform for the development and mechanical verification of TLA+ proofs written in a declarative style requiring little background beyond elementary mathematics. The language supports hierarchical and non-linear proof construction and verification, and it is independent of any verification tool or strategy. A Proof Manager uses backend verifiers such as theorem provers, proof assistants, SMT solvers, and decision procedures to check TLA+ proofs. This paper documents the first public release of TLAPS, distributed with a BSD-like license. It handles almost all the non-temporal part of TLA+ as well as the temporal reasoning needed to prove standard safety properties, in particular invariance and step simulation, but not liveness properties

    Deterministic meeting of sniffing agents in the plane

    Full text link
    Two mobile agents, starting at arbitrary, possibly different times from arbitrary locations in the plane, have to meet. Agents are modeled as discs of diameter 1, and meeting occurs when these discs touch. Agents have different labels which are integers from the set of 0 to L-1. Each agent knows L and knows its own label, but not the label of the other agent. Agents are equipped with compasses and have synchronized clocks. They make a series of moves. Each move specifies the direction and the duration of moving. This includes a null move which consists in staying inert for some time, or forever. In a non-null move agents travel at the same constant speed, normalized to 1. We assume that agents have sensors enabling them to estimate the distance from the other agent (defined as the distance between centers of discs), but not the direction towards it. We consider two models of estimation. In both models an agent reads its sensor at the moment of its appearance in the plane and then at the end of each move. This reading (together with the previous ones) determines the decision concerning the next move. In both models the reading of the sensor tells the agent if the other agent is already present. Moreover, in the monotone model, each agent can find out, for any two readings in moments t1 and t2, whether the distance from the other agent at time t1 was smaller, equal or larger than at time t2. In the weaker binary model, each agent can find out, at any reading, whether it is at distance less than \r{ho} or at distance at least \r{ho} from the other agent, for some real \r{ho} > 1 unknown to them. Such distance estimation mechanism can be implemented, e.g., using chemical sensors. Each agent emits some chemical substance (scent), and the sensor of the other agent detects it, i.e., sniffs. The intensity of the scent decreases with the distance.Comment: A preliminary version of this paper appeared in the Proc. 23rd International Colloquium on Structural Information and Communication Complexity (SIROCCO 2016), LNCS 998

    Parallel Search with no Coordination

    Get PDF
    We consider a parallel version of a classical Bayesian search problem. kk agents are looking for a treasure that is placed in one of the boxes indexed by N+\mathbb{N}^+ according to a known distribution pp. The aim is to minimize the expected time until the first agent finds it. Searchers run in parallel where at each time step each searcher can "peek" into a box. A basic family of algorithms which are inherently robust is \emph{non-coordinating} algorithms. Such algorithms act independently at each searcher, differing only by their probabilistic choices. We are interested in the price incurred by employing such algorithms when compared with the case of full coordination. We first show that there exists a non-coordination algorithm, that knowing only the relative likelihood of boxes according to pp, has expected running time of at most 10+4(1+1k)2T10+4(1+\frac{1}{k})^2 T, where TT is the expected running time of the best fully coordinated algorithm. This result is obtained by applying a refined version of the main algorithm suggested by Fraigniaud, Korman and Rodeh in STOC'16, which was designed for the context of linear parallel search.We then describe an optimal non-coordinating algorithm for the case where the distribution pp is known. The running time of this algorithm is difficult to analyse in general, but we calculate it for several examples. In the case where pp is uniform over a finite set of boxes, then the algorithm just checks boxes uniformly at random among all non-checked boxes and is essentially 22 times worse than the coordinating algorithm.We also show simple algorithms for Pareto distributions over MM boxes. That is, in the case where p(x)1/xbp(x) \sim 1/x^b for 0<b<10< b < 1, we suggest the following algorithm: at step tt choose uniformly from the boxes unchecked in 1,...,min(M,t/σ){1, . . . ,min(M, \lfloor t/\sigma\rfloor)}, where σ=b/(b+k1)\sigma = b/(b + k - 1). It turns out this algorithm is asymptotically optimal, and runs about 2+b2+b times worse than the case of full coordination

    Encrypt-to-self:Securely outsourcing storage

    Get PDF
    We put forward a symmetric encryption primitive tailored towards a specific application: outsourced storage. The setting assumes a memory-bounded computing device that inflates the amount of volatile or permanent memory available to it by letting other (untrusted) devices hold encryptions of information that they return on request. For instance, web servers typically hold for each of the client connections they manage a multitude of data, ranging from user preferences to technical information like database credentials. If the amount of data per session is considerable, busy servers sooner or later run out of memory. One admissible solution to this is to let the server encrypt the session data to itself and to let the client store the ciphertext, with the agreement that the client reproduce the ciphertext in each subsequent request (e.g., via a cookie) so that the session data can be recovered when required. In this article we develop the cryptographic mechanism that should be used to achieve confidential and authentic data storage in the encrypt-to-self setting, i.e., where encryptor and decryptor coincide and constitute the only entity holding keys. We argue that standard authenticated encryption represents only a suboptimal solution for preserving confidentiality, as much as message authentication codes are suboptimal for preserving authenticity. The crucial observation is that such schemes instantaneously give up on all security promises the moment the key is compromised. In contrast, data protected with our new primitive remains fully integrity protected and unmalleable. In the course of this paper we develop a formal model for encrypt-to-self systems, show that it solves the outsourced storage problem, propose surprisingly efficient provably secure constructions, and report on our implementations

    Rendezvous on a Line by Location-Aware Robots Despite the Presence of Byzantine Faults

    Full text link
    A set of mobile robots is placed at points of an infinite line. The robots are equipped with GPS devices and they may communicate their positions on the line to a central authority. The collection contains an unknown subset of "spies", i.e., byzantine robots, which are indistinguishable from the non-faulty ones. The set of the non-faulty robots need to rendezvous in the shortest possible time in order to perform some task, while the byzantine robots may try to delay their rendezvous for as long as possible. The problem facing a central authority is to determine trajectories for all robots so as to minimize the time until the non-faulty robots have rendezvoused. The trajectories must be determined without knowledge of which robots are faulty. Our goal is to minimize the competitive ratio between the time required to achieve the first rendezvous of the non-faulty robots and the time required for such a rendezvous to occur under the assumption that the faulty robots are known at the start. We provide a bounded competitive ratio algorithm, where the central authority is informed only of the set of initial robot positions, without knowing which ones or how many of them are faulty. When an upper bound on the number of byzantine robots is known to the central authority, we provide algorithms with better competitive ratios. In some instances we are able to show these algorithms are optimal

    Almost Universal Anonymous Rendezvous in the Plane

    Get PDF
    Two mobile agents represented by points freely moving in the plane and starting at two distinct positions, have to meet. The meeting, called rendezvous, occurs when agents are at distance at most rr of each other and never move after this time, where rr is a positive real unknown to them, called the visibility radius. Agents are anonymous and execute the same deterministic algorithm. Each agent has a set of private attributes, some or all of which can differ between agents. These attributes are: the initial position of the agent, its system of coordinates (orientation and chirality), the rate of its clock, its speed when it moves, and the time of its wake-up. If all attributes (except the initial positions) are identical and agents start at distance larger than rr then they can never meet. However, differences between attributes make it sometimes possible to break the symmetry and accomplish rendezvous. Such instances of the rendezvous problem (formalized as lists of attributes), are called feasible. Our contribution is three-fold. We first give an exact characterization of feasible instances. Thus it is natural to ask whether there exists a single algorithm that guarantees rendezvous for all these instances. We give a strong negative answer to this question: we show two sets S1S_1 and S2S_2 of feasible instances such that none of them admits a single rendezvous algorithm valid for all instances of the set. On the other hand, we construct a single algorithm that guarantees rendezvous for all feasible instances outside of sets S1S_1 and S2S_2. We observe that these exception sets S1S_1 and S2S_2 are geometrically very small, compared to the set of all feasible instances: they are included in low-dimension subspaces of the latter. Thus, our rendezvous algorithm handling all feasible instances other than these small sets of exceptions can be justly called almost universal

    Mobile agent rendezvous: A survey

    Get PDF
    Abstract. Recent results on the problem of mobile agent rendezvous on distributed networks are surveyed with an emphasis on outlining the various approaches taken by researchers in the theoretical computer science community.

    Fast Two-Robot Disk Evacuation with Wireless Communication

    Get PDF
    In the fast evacuation problem, we study the path planning problem for two robots who want to minimize the worst-case evacuation time on the unit disk. The robots are initially placed at the center of the disk. In order to evacuate, they need to reach an unknown point, the exit, on the boundary of the disk. Once one of the robots finds the exit, it will instantaneously notify the other agent, who will make a beeline to it. The problem has been studied for robots with the same speed~\cite{s1}. We study a more general case where one robot has speed 11 and the other has speed s1s \geq 1. We provide optimal evacuation strategies in the case that sc2.752.75s \geq c_{2.75} \approx 2.75 by showing matching upper and lower bounds on the worst-case evacuation time. For 1s<c2.751\leq s < c_{2.75}, we show (non-matching) upper and lower bounds on the evacuation time with a ratio less than 1.221.22. Moreover, we demonstrate that a generalization of the two-robot search strategy from~\cite{s1} is outperformed by our proposed strategies for any sc1.711.71s \geq c_{1.71} \approx 1.71.Comment: 18 pages, 10 figure

    Evacuating Two Robots from a Disk: A Second Cut

    Full text link
    We present an improved algorithm for the problem of evacuating two robots from the unit disk via an unknown exit on the boundary. Robots start at the center of the disk, move at unit speed, and can only communicate locally. Our algorithm improves previous results by Brandt et al. [CIAC'17] by introducing a second detour through the interior of the disk. This allows for an improved evacuation time of 5.62345.6234. The best known lower bound of 5.2555.255 was shown by Czyzowicz et al. [CIAC'15].Comment: 19 pages, 5 figures. This is the full version of the paper with the same title accepted in the 26th International Colloquium on Structural Information and Communication Complexity (SIROCCO'19

    Almost optimal asynchronous rendezvous in infinite multidimensional grids

    Get PDF
    Two anonymous mobile agents (robots) moving in an asynchronous manner have to meet in an infinite grid of dimension δ&gt; 0, starting from two arbitrary positions at distance at most d. Since the problem is clearly infeasible in such general setting, we assume that the grid is embedded in a δ-dimensional Euclidean space and that each agent knows the Cartesian coordinates of its own initial position (but not the one of the other agent). We design an algorithm permitting the agents to meet after traversing a trajectory of length O(d δ polylog d). This bound for the case of 2d-grids subsumes the main result of [12]. The algorithm is almost optimal, since the Ω(d δ) lower bound is straightforward. Further, we apply our rendezvous method to the following network design problem. The ports of the δ-dimensional grid have to be set such that two anonymous agents starting at distance at most d from each other will always meet, moving in an asynchronous manner, after traversing a O(d δ polylog d) length trajectory. We can also apply our method to a version of the geometric rendezvous problem. Two anonymous agents move asynchronously in the δ-dimensional Euclidean space. The agents have the radii of visibility of r1 and r2, respectively. Each agent knows only its own initial position and its own radius of visibility. The agents meet when one agent is visible to the other one. We propose an algorithm designing the trajectory of each agent, so that they always meet after traveling a total distance of O( ( d)), where r = min(r1, r2) and for r ≥ 1. r)δpolylog ( d r
    corecore