831 research outputs found
Effect of different oleogelators on lipolysis and curcuminoid bioaccessibility upon in vitro digestion of sunflower oil oleogels
Sunflower oil enriched with curcuminoid compounds (CUs) was gelled by adding 5% (w/w) saturated monoglycerides (MG), rice bran waxes (RW) or a mixture of \u3b2-sitosterol and \u3b3-oryzanol (PS). The resulting oleogels differed for rheological properties and firmness due to the difference in gel network structure. PS oleogel was the firmest sample followed by RW and MG ones. Upon in vitro digestion, fatty acid release as a function of digestion time was greatly affected by oleogel structure: the extent of lipolysis decreased as oleogel strength increased (PS < RW < MG). On the other hand, the nature of the oleogelator affected CUs bioaccessibility, which was lower in oleogels containing crystalline particles (MG and RW). These findings appear interesting in the attempt to develop oleogels able to control lipid digestion as well as to deliver bioactive molecules in food systems
Chiral recognition in D-, L-arginine derived polyamidoamino acids and sodium deoxycholate solutions
Nowadays the spontaneous self-organization of a polymer into an ordered structure is a sought-after property of many smart materials, whose applications might range from catalysis1 to drug-delivery2. However, literature regarding the role played by these specific conformations in chiral recognition remains scarce. In this context, polyamidoamino acids (PAACs) are an emerging class of stimuli-responsive bioinspired synthetic polymers able to self-assemble into pH depend conformations.3,4 Arginine based PAACs, named ARGO7, were obtained in water at pH 8-9 from the stepwise polyaddition of L- or D-arginine to N,N\u2019methylenebisacrylamide. Results indicated Mn 8500, PDI 1.4 and Rh of 1.2 nm.3 Molecular dynamics (MD) and circular dichroism (CD) showed ARGO7 folded into a rigid structure, reminiscent of the hairpin conformation, solely driven by the polymer main chain. Due to its ability to self-assemble in solution forming chiral structures, L- and D-ARGO7 may selectively interact with biological components. To assess chiral recognition, sodium deoxycholate (NaDC), one of the components of bile salts, was chosen as a chiral model surface. In aqueous solution, NaDC showed three different pH dependent behaviour: homogeneous solution (pH>8), gel phase (pH 7-8) and aggregation/flocculation (pH<6.5). Notwithstanding the ability of NaDC to self-assemble into different conformations at each pH interval, signs of chiral recognition were found in NaDC gel phase only. Conformational modifications were probed by circular dichroism spectroscopy: both D- and L-ARGO7 changed shape and magnitude of the CD pattern, whereas D,LARGO7 did not modify the CD spectra of NaDC. After 8 days, NaDC compact structure loosened, ended up being fluid and the CD pattern were completely modified due to NaDC and D- or L-ARGO7 interactions. Incoming SANS studies will probably highlight the mechanisms and dynamics of the chiral interactions in these polyelectrolyte-micelle systems.
(1) Luo, R.; Zhu, M.; Shen, X.; Li, S. J. Catal. 2015, 331, 49. (2) Qui\uf1ones, J. P.; Peniche, H.; Peniche, C. Polymers. 2018, 10, 3, 235. (3) Manfredi, A.; Mauro, N.; Terenzi, A.; Alongi, J.; Lazzari, F.; Ganazzoli, F.; Raffaini, G.; Ranucci, E.; Ferruti, P. ACS Macro Lett. 2017, 6, 987. (4) Lazzari, F.; Manfredi, A.; Alongi, J.; Mendichi, R.; Ganazzoli, F.; Raffaini, G.; Ferruti, P.; Ranucci, E. Polymers 2018, 10, 1261
Probing chiral interactions between L- and D-arginine-based polymers and sodium deoxycholate solutions
Nowadays the spontaneous self-organization of a polymer into an ordered structure is a soughtafter property of many smart materials, whose applications might range from catalysis [1] to drugdelivery [2]. However, literature regarding the role played by these specific conformations in chiral recognition remains scarce. In this context, polyamidoamino acids (PAACs) are an emerging class of stimuli-responsive bioinspired synthetic polymers able to self-assemble into pH depend conformations [3,4]. PAACs are an off-spring of polyamidoamines (PAAs), a family of polymers obtained by the Michael-type polyaddition of prim-monoamines or sec-diamines with bisacrylamides. The reaction occurs in aqueous solution at pH = 8\u20139 and at room temperature. By using \u3b1-amino acids as monomers, PAACs are obtained.
The first example of PAAC was named ARGO7, obtained by the stepwise polyaddition in water of L- or D-arginine to N,N\u2019-methylenebisacrylamide. Results indicated Mn 8500, PDI 1.4 and Rh of 1.2 nm [3]. Molecular dynamics (MD) and circular dichroism (CD) showed ARGO7 folded into a rigid structure, reminiscent of the hairpin conformation, solely driven by the polymer main chain. Due to its ability to self-assemble in solution forming chiral structures, L- and D-ARGO7 may selectively interact with biological components.
To assess chiral recognition, sodium deoxycholate (NaDC), one of the components of bile salts, was chosen as a chiral model surface. In aqueous solution, NaDC showed three different pH dependent behaviour: homogeneous solution (pH>8), gel phase (pH 7-8) and aggregation/flocculation (pH<6.5). Notwithstanding the ability of NaDC to self-assemble into different conformations at each pH interval, signs of chiral recognition were found in NaDC gel phase only. Conformational modifications were probed by circular dichroism spectroscopy: both D- and L-ARGO7 changed shape and magnitude of the CD pattern, whereas D,L-ARGO7 did not modify the CD spectra of NaDC. After 8 days, NaDC compact structure loosened, ended up being fluid and the CD pattern were completely modified due to NaDC and D- or L-ARGO7 interactions. Incoming diffusion NMR and SANS studies will probably highlight the mechanisms and dynamics of the chiral interactions in these polyelectrolyte-micelle systems.
[1] Luo, R.; Zhu, M.; Shen, X.; Li, S. J. Catal. 2015, 331, 49. [2] Qui\uf1ones, J. P.; Peniche, H.; Peniche, C. Polymers. 2018, 10, 3, 235. [3] Manfredi, A.; Mauro, N.; Terenzi, A.; Alongi, J.; Lazzari, F.; Ganazzoli, F.; Raffaini, G.; Ranucci, E.; Ferruti, P. ACS Macro Lett. 2017, 6, 987. [4] Lazzari, F.; Manfredi, A.; Alongi, J.; Mendichi, R.; Ganazzoli, F.; Raffaini, G.; Ferruti, P.; Ranucci, E. Polymers 2018, 10, 1261
Sulfur-based copolymeric polyamidoamines as efficient flame-retardants for cotton
The polyamidoamine derived from N,N'-methylenebisacrylamide (M) and glycine (G), M-G, has been shown to be an effective flame-retardant (FR) for cotton in horizontal flame spread tests (HFST), extinguishing the flame at 5% add-on. Its activity was attributed to its intrinsic intumescence. In vertical flame spread tests (VFST), M-G failed to extinguish the flame even at 30% add-on. Conversely, in VFST, the polyamidoamine derived from M and cystine (C), M-C, inhibited cotton combustion at 16% add-on, but in HFST failed to extinguish the flame below 12% add-on. Its activity was ascribed to the release of sulfur-containing volatiles acting as radical scavengers. In this work, the FR effectiveness of M-Gm-Cn copolymers with different G/C ratio was compared with that of the M-G and M-C homopolymers and of M-G/M-C blends of the same compositions. In HFST, both copolymers and blends extinguished the flame. In particular, M-G50-C50 and (M-G/M-C)50/50 extinguished the flame, even at 7% add-on. In VFST, the copolymers with 6550% M-C units, similar to M-C, inhibited cotton combustion at 16% add-on. At the same add-on, the M-G/M-C blends failed to extinguish the flame. It may be concluded that, in contrast to blends, copolymers combined the merits of both homopolymers in all tests
Polyamidoamines derived from natural α-amino acids as effective flame retardants for cotton
In this paper, bioinspired polyamidoamines (PAAs) were synthesized from N,N′-methylene bisacrylamide and nine natural α-amino acids: L-alanine, L-valine, L-leucine (M-LEU), L-histidine, L-serine, L-asparagine, L-glutamine (M-GLN), L-aspartic acid and L-glutamic acid (M-GLU) and their performance as flame retardants (FRs) for cotton were determined. The aim was to ascertain if the ability to protect cotton from fire by the process of intumescing, previously found for the glycine-derived M-GLY, was a general feature of α-amino acid-derived PAAs. None of the PAAs ignited by flame impingement, apart from M-LEU, which burned for a few seconds leaving 93% of residue. All of them formed carbon-and oxygen-rich, porous chars with a graphitic structure in the air at 350◦C, as revealed by X-ray photoelectron spectroscopy. All samples were tested as FRs for cotton by horizontal flame spread tests. At a 5% add-on, M-GLU and M-GLN extinguished the flame. The same results were obtained with all the other PAAs at a 7% add-on. The α-amino acid residues influenced the FR performance. The most effective were those that, by heating, were most suitable for producing thermally stable cyclic aromatic structures. All PAA-treated cotton samples, even when burning, left significant residues, which, according to scanning electron microscopy analysis, maintained the original cotton texture
Linear Polyamidoamines as Novel Biocompatible Intumescent Flame Retardants for Cotton
Since the middle of the last century, many industrial and academic researchers have devoted a lot of effort to the development of safe and effective flame- retardants (FR). As regards cotton, phosphorylated compounds were the predominant FR for several decades [1] despite many of them had been shown to be bioaccumulative.[1] Recently, biomolecules including proteins have been proposed as FR.[2] Many linear polyamidoamines (PAAs), a family of synthetic polymers with exceptional structural versatility,[3] have high thermal stability coupled with chain structure and side substituents reminding those of proteins.[4] These features suggested that PAAs could act as FR. This presentation reports on the results obtained with a library of eight PAAs applied as coatings on cotton fabrics from aqueous solutions. All tested PAAs warrant remarkable potential as surface-confined intumescent FR. In ignitability tests, six of them exposed to direct flame for 10 s do not burn, but produce carbonaceous crusts sheltering the underneath sample. Thermogravimetric analyses show that at T 65 400 \ub0C all PAAs leave in air substantial char residues that oxidize at T > 500 \ub0C. At 450 \ub0C they form porous carbonaceous structures indicating the tendency to intumesce. In horizontal flame spread tests, cotton stripes impregnated with most PAAs extinguish flame at add-ons ranging from 4 to 20%, whereas untreated cotton vigorously burns without leaving residues. Upon 35 kW/m2 heat flux, all PAA-treated samples significantly reduce the main combustion parameters.
References
[1] R. A. Horrocks, Polym. Degrad. Stab. 2011, 96, 377.
[2] L. Costes, F. Laoutid, S. Brohez, P. Dubois, Mater. Sci. Eng. Report, R. 2017, 117, 1.
[3] P. Ferruti, J. Polym. Sci, Part A: Polym. Chem. 2013, 51, 2319.
[4] F. Danusso, P. Ferruti, Polymer 1970, 11, 88
Highlight on the Mechanism of Linear Polyamidoamine Degradation in Water
This paper aims at elucidating the degradation mechanism of linear polyamidoamines (PAAs) in water. PAAs are synthesized by the aza-Michael polyaddition of prim-monoamines or bis-sec-amines with bisacrylamides. Many PAAs are water-soluble and warrant potential for biotechnological applications and as flame-retardants. PAAs have long been known to degrade in water at pH 65 7, but their degradation mechanism was never explored in detail. Filling this gap was necessary to assess the suitability of PAAs for the above applications. To this aim, a small library of nine PAAs was expressly synthesized and their degradation mechanism in aqueous solution studied by 1H-NMR in different conditions of pH and temperature. The main degradation mechanism was in all cases the retro-aza-Michael reaction triggered by dilution but, in some cases, hints were detected of concurrent hydrolytic degradation. Most PAAs were stable at pH 4.0; all degraded at pH 7.0 and 9.0. Initially, the degradation rate was faster at pH 9.0 than at pH 7.0, but the percent degradation after 97 days was mostly lower. In most cases, at pH 7.0 the degradation followed first order kinetics. The degradation rates mainly depended on the basicity of the amine monomers. More basic amines acted as better leaving groups
Oleogelation of extra virgin olive oil by different gelators affects lipid digestion and polyphenol bioaccessibility
The possibility to steer extra virgin olive oil (EVOO) digestion and polyphenol bioaccessibility through oleogelation was investigated. EVOO was converted into oleogels using lipophilic (monoglycerides, rice wax, sunflower wax, phytosterols) or hydrophilic (whey protein aerogel particles, WP) gelators. In-vitro digestion demonstrated that the oleogelator nature influenced both lipid digestion and polyphenol bioaccessibility. WP-based oleogels presented ∼100% free fatty acid release compared to ∼64% for unstructured EVOO and ∼40 to ∼55% for lipophilic-based oleogels. This behavior was attributed to the ability of WP to promote micelle formation through oleogel destructuring. Contrarily, the lower lipolysis of EVOO gelled with lipophilic gelators compared to unstructured EVOO suggested that the gelator obstructed lipase accessibility. Tyrosol and hydroxytyrosol bioaccessibility increased for WP oleogels (∼27%), while liposoluble-based oleogels reduced it by 7 to 13%. These findings highlight the deep effect of the gelator choice on the digestion fate of EVOO components in the human body
Nonlinear models of the bump cepheid HV 905 and the distance modulus to the large magellanic cloud
Nonlinear pulsation models have been used to simulate the light curve of the LMC bump Cepheid HV 905. In order to reproduce the light curve accurately, tight constraints on the input parameters M, L, and T-eff are required. The results, combined with accurate existing V and I photometry, yield an LMC distance modulus of 18.51 +/- 0.05, and they show that the luminosity of HV 905 is much higher than expected from the mass-luminosity relation of stellar evolution theory. If we assume that the pulsation models are accurate, this suggests that there is a larger amount of convective core overshoot during the main-sequence evolution of stars with M similar to 5 M. than is usually assumed
- …