3,736 research outputs found

    Can we meaningfully speak of changes in price under the regime of changes in techniques?

    Get PDF
    This paper presents a simulation exercise on Sraffa's system under various types of technical changes to show that the direction of changes in prices of commodities is contingent on the choice of the numeraire. Thus, such a comparison of prices in two systems turns out to be meaningless. This result points to the arbitrary nature of the neoclassical supply functions, as they inevitably compare prices across several Sraffa systems on the basis of an arbitrarily chosen numeraire. We anticipated such a result from our reading of Sraffa as part of his 'prelude to a critique of economic theory'

    Nonlinear thermal transport and negative differential thermal conductance in graphene nanoribbons

    Get PDF
    We employ classical molecular dynamics to study the nonlinear thermal transport in graphene nanoribbons (GNRs). For GNRs under large temperature biases beyond linear response regime, we have observed the onset of negative differential thermal conductance (NDTC). NDTC is tunable by varying the manner of applying the temperature biases. NDTC is reduced and eventually disappears when the length of the GNR increases. We have also observed NDTC in triangular GNRs, where NDTC exists only when the heat current is from the narrower to the wider end. These effects may be useful in nanoscale thermal managements and thermal signal processing utilizing GNRs.Comment: 5 pages, 4 figure

    Effective Radii and Color Gradients in Radio Galaxies

    Get PDF
    We present de Vaucouleurs' effective radii in B and R bands for a sample of Molonglo Reference Catalogue radio galaxies and a control sample of normal galaxies. We use the ratio of the scale lengths in the two bands as an indicator to show that the radio galaxies tend to have excess of blue color in their inner region much more frequently than the control galaxies. We show that the scale length ratio is a useful indicator of radial color variation even when the conventional color gradient is too noisy to serve the purpose.Comment: 11 pages, 4 figures, (LaTeX: aaspp4, epsfig), to appear in ApJL 199

    Analyzing flow anisotropies with excursion sets in relativistic heavy-ion collisions

    Full text link
    We show that flow anisotropies in relativistic heavy-ion collisions can be analyzed using a certain technique of shape analysis of excursion sets recently proposed by us for CMBR fluctuations to investigate anisotropic expansion history of the universe. The technique analyzes shapes (sizes) of patches above (below) certain threshold value for transverse energy/particle number (the excursion sets) as a function of the azimuthal angle and rapidity. Modeling flow by imparting extra anisotropic momentum to the momentum distribution of particles from HIJING, we compare the resulting distributions for excursion sets at two different azimuthal angles. Angles with maximum difference in the two distributions identify the event plane, and the magnitude of difference in the two distributions relates to the magnitude of momentum anisotropy, i.e. elliptic flow.Comment: 5 pages, 4 figure

    Baryon Inhomogeneity Generation in the Quark-Gluon Plasma Phase

    Full text link
    We discuss the possibility of generation of baryon inhomogeneities in a quark-gluon plasma phase due to moving Z(3) interfaces. By modeling the dependence of effective mass of the quarks on the Polyakov loop order parameter, we study the reflection of quarks from collapsing Z(3) interfaces and estimate resulting baryon inhomogeneities in the context of the early universe. We argue that in the context of certain low energy scale inflationary models, it is possible that large Z(3) walls arise at the end of the reheating stage. Collapse of such walls could lead to baryon inhomogeneities which may be separated by large distances near the QCD scale. Importantly, the generation of these inhomogeneities is insensitive to the order, or even the existence, of the quark-hadron phase transition. We also briefly discuss the possibility of formation of quark nuggets in this model, as well as baryon inhomogeneity generation in relativistic heavy-ion collisions.Comment: 11 pages, 2 figures, revtex4, more detailed discussion added about formation and evolution of Z(3)domain walls in the univers

    Strings with a confining core in a Quark-Gluon Plasma

    Full text link
    We consider the intersection of N different interfaces interpolating between different ZNZ_N vacua of an SU(N) gauge theory using the Polyakov loop order parameter. Topological arguments show that at such a string-like junction, the order parameter should vanish, implying that the core of this string (i.e. the junction region of all the interfaces) is in the confining phase. Using the effective potential for the Polyakov loop proposed by Pisarski for QCD, we use numerical minimization technique and estimate the energy per unit length of the core of this string to be about 2.7 GeV/fm at a temperature about twice the critical temperature. For the parameters used, the interface tension is obtained to be about 7 GeV/fm2^2. Lattice simulation of pure gauge theories should be able to investigate properties of these strings. For QCD with quarks, it has been discussed in the literature that this ZNZ_N symmetry may still be meaningful, with quark contributions leading to explicit breaking of this ZNZ_N symmetry. With this interpretation, such {\it QGP} strings may play important role in the evolution of the quark-gluon plasma phase and in the dynamics of quark-hadron transition.Comment: 18 pages, 6 figures, RevTe

    Excited hadrons as a signal for quark-gluon plasma formation

    Full text link
    At the quark-hadron transition, when quarks get confined to hadrons, certain orbitally excited states, namely those which have excitation energies above the respective L=0L = 0 states of the same order as the transition temperature TcT_c, may form easily because of thermal velocities of quarks at the transition temperature. We propose that the ratio of multiplicities of such excited states to the respective L=0L = 0 states can serve as an almost model independent signal for the quark-gluon plasma formation in relativistic heavy-ion collisions. For example, the ratio RR^* of multiplicities of DSJ±(2317)(JP=0+)D_{SJ}^{*\pm}(2317)(J^P = 0^+) and DS±(2112)(JP=1)D_S^{*\pm}(2112)(J^P = 1^-) when plotted with respect to the center of mass energy of the collision s\sqrt{s} (or vs. centrality/number of participants), should show a jump at the value of s\sqrt{s} beyond which the QGP formation occurs. This should happen irrespective of the shape of the overall plot of RR^* vs. s\sqrt{s}. Recent data from RHIC on Λ/Λ\Lambda^*/\Lambda vs. Npart_{part} for large values of Npart_{part} may be indicative of such a behavior, though there are large error bars. We give a list of several other such candidate hadronic states.Comment: 19 pages, RevTex, no figures, minor change
    corecore