22 research outputs found

    Osmoregulators proline and glycine betaine counteract salinity stress in canola

    Get PDF
    Salt inundation leads to increased salinization of arable land in many arid and semi-arid regions. Until genetic solutions are found farmers and growers must either abandon salt-affected fields or use agronomic treatments that alleviate salt stress symptoms. Here, field experiments were carried out to study the effect of the osmoregulators proline at 200 mg L-1 and glycine betaine at 400 mg L-1 in counteracting the harmful effect of soil salinity stress on canola plants grown in Egypt. We assessed growth characteristics, yield and biochemical constituents. Results show first that all growth characters decreased with increasing salinity stress but applied osmoregulators alleviated these negative effects. Second, salinity stress decreased photosynthetic pigments, K and P contents, whilst increasing proline, soluble sugars, ascorbic acid, Na and Cl contents. Third, application of osmoregulators without salt stress increased photosynthetic pigments, proline, soluble sugars, N, K and P contents whilst decreasing Na and Cl contents. It is concluded that the exogenously applied osmoregulators glycine betaine and proline can fully or partially counteract the harmful effect of salinity stress on growth and yield of canola.© INRA and Springer-Verlag, France 2012

    Effect of foliar application of glycinebetaine on yield components of drought-stressed tobacco plants

    No full text
    vo

    Exogenous glycinebetaine enhances grain yield of maize, sorghum and wheat grown under two supplementary watering regimes

    No full text
    Drought occurring at critical growth and developmental stages in cereals affects productivity by reducing biomass accumulation, grain set, and grain yield and quality. Maize (cv. SR-73), sorghum (cv. Trump), and wheat (cv. Spear) were established in drought-prone field conditions in Perth, Western Australia, in 1994. The plants were then subjected to optimal and suboptimal supplementary watering regimes at growth stages that were sensitive to water availability. Glycinebetaine in aqueous solution was applied to leaves at three rates (2, 4 and 6 kg ha-1 and a control) to establish whether its application could ameliorate the effects of drought on the yield of the crops. Aboveground biomass production was measured at the beginning and at termination of the watering regimes. Leaf tissue glycinebetaine concentrations were determined 1 and 3 weeks after application. At physiological maturity, grains from the crops were harvested and grain yield, number of grains m-2 and single grain weight were recorded. Drought significantly reduced above-ground biomass production in maize (P = 0.047), but not in sorghum and wheat. Grain yield of maize, number of grains m-2 of maize and sorghum, and single grain weight of sorghum were significantly depressed by drought. Foliar application of aqueous glycinebetaine marginally enhanced biomass production in the three crops and significantly increased grain yield of maize (P = 0.001) and sorghum (P = 0.003). It also resulted in more grains m-2 of maize, sorghum and wheat (P = 0.001, 0.001 and 0.003, respectively), with interactions between water and glycinebetaine treatments for sorghum and wheat (P = 0.001 and 0.001, respectively). Residual tissue glycinebetaine levels remained high 3 weeks after application to the crops. The positive effects of glycinebetaine treatment appear to be linked to its physiological role as a plant osmoticum that improves drought tolerance. The results of these studies suggest that foliar application of glycinebetaine may be used to improve drought tolerance and economic yield of maize and sorghum, but not of wheat. Increased grain yield was associated with more grains m-2 rather than greater single grain weight
    corecore