58 research outputs found

    On the Aizenman exponent in critical percolation

    Full text link
    The probabilities of clusters spanning a hypercube of dimensions two to seven along one axis of a percolation system under criticality were investigated numerically. We used a modified Hoshen--Kopelman algorithm combined with Grassberger's "go with the winner" strategy for the site percolation. We carried out a finite-size analysis of the data and found that the probabilities confirm Aizenman's proposal of the multiplicity exponent for dimensions three to five. A crossover to the mean-field behavior around the upper critical dimension is also discussed.Comment: 5 pages, 4 figures, 4 table

    The RANLUX generator: resonances in a random walk test

    Get PDF
    Using a recently proposed directed random walk test, we systematically investigate the popular random number generator RANLUX developed by Luescher and implemented by James. We confirm the good quality of this generator with the recommended luxury level. At a smaller luxury level (for instance equal to 1) resonances are observed in the random walk test. We also find that the lagged Fibonacci and Subtract-with-Carry recipes exhibit similar failures in the random walk test. A revised analysis of the corresponding dynamical systems leads to the observation of resonances in the eigenvalues of Jacobi matrix.Comment: 18 pages with 14 figures, Essential addings in the Abstract onl

    Periodic orbits of the ensemble of Sinai-Arnold cat maps and pseudorandom number generation

    Full text link
    We propose methods for constructing high-quality pseudorandom number generators (RNGs) based on an ensemble of hyperbolic automorphisms of the unit two-dimensional torus (Sinai-Arnold map or cat map) while keeping a part of the information hidden. The single cat map provides the random properties expected from a good RNG and is hence an appropriate building block for an RNG, although unnecessary correlations are always present in practice. We show that introducing hidden variables and introducing rotation in the RNG output, accompanied with the proper initialization, dramatically suppress these correlations. We analyze the mechanisms of the single-cat-map correlations analytically and show how to diminish them. We generalize the Percival-Vivaldi theory in the case of the ensemble of maps, find the period of the proposed RNG analytically, and also analyze its properties. We present efficient practical realizations for the RNGs and check our predictions numerically. We also test our RNGs using the known stringent batteries of statistical tests and find that the statistical properties of our best generators are not worse than those of other best modern generators.Comment: 18 pages, 3 figures, 9 table

    Critical properties of joint spin and Fortuin-Kasteleyn observables in the two-dimensional Potts model

    Full text link
    The two-dimensional Potts model can be studied either in terms of the original Q-component spins, or in the geometrical reformulation via Fortuin-Kasteleyn (FK) clusters. While the FK representation makes sense for arbitrary real values of Q by construction, it was only shown very recently that the spin representation can be promoted to the same level of generality. In this paper we show how to define the Potts model in terms of observables that simultaneously keep track of the spin and FK degrees of freedom. This is first done algebraically in terms of a transfer matrix that couples three different representations of a partition algebra. Using this, one can study correlation functions involving any given number of propagating spin clusters with prescribed colours, each of which contains any given number of distinct FK clusters. For 0 <= Q <= 4 the corresponding critical exponents are all of the Kac form h_{r,s}, with integer indices r,s that we determine exactly both in the bulk and in the boundary versions of the problem. In particular, we find that the set of points where an FK cluster touches the hull of its surrounding spin cluster has fractal dimension d_{2,1} = 2 - 2 h_{2,1}. If one constrains this set to points where the neighbouring spin cluster extends to infinity, we show that the dimension becomes d_{1,3} = 2 - 2 h_{1,3}. Our results are supported by extensive transfer matrix and Monte Carlo computations.Comment: 15 pages, 3 figures, 2 table

    Critical Point Correlation Function for the 2D Random Bond Ising Model

    Full text link
    High accuracy Monte Carlo simulation results for 1024*1024 Ising system with ferromagnetic impurity bonds are presented. Spin-spin correlation function at a critical point is found to be numerically very close to that of a pure system. This is not trivial since a critical temperature for the system with impurities is almost two times lower than pure Ising TcT_c. Finite corrections to the correlation function due to combined action of impurities and finite lattice size are described.Comment: 7 pages, 2 figures after LaTeX fil

    KH2PO4 + Host Matrix (Alumina / SiO2_2) Nanocomposite: Raman Scattering Insight

    Full text link
    We report on the synthesis and Raman scattering characterization of composite materials based on the hostnanoporous matrices filled with nanostructured KH2PO4 (KDP) crystal. Silica (SiO2) and anodized aluminium oxide (AAO) were used as host matrices with various pore diameters, inter-pore spacing and morphology. The structure of the nanocomposites was investigated by X-ray diffraction and scanning electron microscopy. Raman scattering reveals the creation of one-dimensional nanostructured KDP inside the SiO2 matrix. We clearly observed the stretching {\nu}1, {\nu}3 and bending {\nu}2 vibrations of PO4 tetrahedral groups in the Raman spectrum of SiO2 + KDP. In Raman scattering spectra of AAO + KDP nanocomposite, the broad fluorescence background of AAO matrix dominates to a great extent, hindering thus the detecting of the KDP compound spectral response.Comment: 4 pages, 2 figures; 21st International Conference on Transparent Optical Networks (ICTON) 201

    Algorithm for normal random numbers

    Full text link
    We propose a simple algorithm for generating normally distributed pseudo random numbers. The algorithm simulates N molecules that exchange energy among themselves following a simple stochastic rule. We prove that the system is ergodic, and that a Maxwell like distribution that may be used as a source of normally distributed random deviates follows when N tends to infinity. The algorithm passes various performance tests, including Monte Carlo simulation of a finite 2D Ising model using Wolff's algorithm. It only requires four simple lines of computer code, and is approximately ten times faster than the Box-Muller algorithm.Comment: 5 pages, 3 encapsulated Postscript Figures. Submitted to Phys.Rev.Letters. For related work, see http://pipe.unizar.es/~jf

    Quenched bond dilution in two-dimensional Potts models

    Full text link
    We report a numerical study of the bond-diluted 2-dimensional Potts model using transfer matrix calculations. For different numbers of states per spin, we show that the critical exponents at the random fixed point are the same as in self-dual random-bond cases. In addition, we determine the multifractal spectrum associated with the scaling dimensions of the moments of the spin-spin correlation function in the cylinder geometry. We show that the behaviour is fully compatible with the one observed in the random bond case, confirming the general picture according to which a unique fixed point describes the critical properties of different classes of disorder: dilution, self-dual binary random-bond, self-dual continuous random bond.Comment: LaTeX file with IOP macros, 29 pages, 14 eps figure

    Critical domain walls in the Ashkin-Teller model

    Full text link
    We study the fractal properties of interfaces in the 2d Ashkin-Teller model. The fractal dimension of the symmetric interfaces is calculated along the critical line of the model in the interval between the Ising and the four-states Potts models. Using Schramm's formula for crossing probabilities we show that such interfaces can not be related to the simple SLEÎş_\kappa, except for the Ising point. The same calculation on non-symmetric interfaces is performed at the four-states Potts model: the fractal dimension is compatible with the result coming from Schramm's formula, and we expect a simple SLEÎş_\kappa in this case.Comment: Final version published in JSTAT. 13 pages, 5 figures. Substantial changes in the data production, analysis and in the conclusions. Added a section about the crossing probability. Typeset with 'iopart

    A new test for random number generators: Schwinger-Dyson equations for the Ising model

    Get PDF
    We use a set of Schwinger-Dyson equations for the Ising Model to check several random number generators. For the model in two and three dimensions, it is shown that the equations are sensitive tests of bias originated by the random numbers. The method is almost costless in computer time when added to any simulation.Comment: 6 pages, 3 figure
    • …
    corecore