We study the fractal properties of interfaces in the 2d Ashkin-Teller model.
The fractal dimension of the symmetric interfaces is calculated along the
critical line of the model in the interval between the Ising and the
four-states Potts models. Using Schramm's formula for crossing probabilities we
show that such interfaces can not be related to the simple SLEκ, except
for the Ising point. The same calculation on non-symmetric interfaces is
performed at the four-states Potts model: the fractal dimension is compatible
with the result coming from Schramm's formula, and we expect a simple
SLEκ in this case.Comment: Final version published in JSTAT. 13 pages, 5 figures. Substantial
changes in the data production, analysis and in the conclusions. Added a
section about the crossing probability. Typeset with 'iopart