Abstract

We study the fractal properties of interfaces in the 2d Ashkin-Teller model. The fractal dimension of the symmetric interfaces is calculated along the critical line of the model in the interval between the Ising and the four-states Potts models. Using Schramm's formula for crossing probabilities we show that such interfaces can not be related to the simple SLEκ_\kappa, except for the Ising point. The same calculation on non-symmetric interfaces is performed at the four-states Potts model: the fractal dimension is compatible with the result coming from Schramm's formula, and we expect a simple SLEκ_\kappa in this case.Comment: Final version published in JSTAT. 13 pages, 5 figures. Substantial changes in the data production, analysis and in the conclusions. Added a section about the crossing probability. Typeset with 'iopart

    Similar works

    Full text

    thumbnail-image

    Available Versions