41,987 research outputs found
Relativistic Quantum Games in Noninertial Frames
We study the influence of Unruh effect on quantum non-zero sum games. In
particular, we investigate the quantum Prisoners' Dilemma both for entangled
and unentangled initial states and show that the acceleration of the
noninertial frames disturbs the symmetry of the game. It is shown that for
maximally entangled initial state, the classical strategy C (cooperation)
becomes the dominant strategy. Our investigation shows that any quantum
strategy does no better for any player against the classical strategies. The
miracle move of Eisert et al (1999 Phys. Rev. Lett. 83 3077) is no more a
superior move. We show that the dilemma like situation is resolved in favor of
one player or the other.Comment: 8 Pages, 2 figures, 2 table
Sensitive Coverage Saves Lives: Improving media portrayal of suicidal behaviour
The report outlines the results of consultations with journalists, suicide prevention agencies and mental health groups conducted by the journalism ethics charity MediaWise. It makes recommendations for action by media organisations and suicide prevention agencies
Effect of supervised exercise on physical function and balance in patients with intermittent claudication
Background The aim of the study was to identify whether a standard supervised exercise programme (SEP) for patients with intermittent claudication improved specific measures of functional performance including balance. Methods A prospective observational study was performed at a single tertiary vascular centre. Patients with symptomatic intermittent claudication (Rutherford grades 1–3) were recruited to the study. Participants were assessed at baseline (before SEP) and 3, 6 and 12 months afterwards for markers of lower-limb ischaemia (treadmill walking distance and ankle : brachial pressure index), physical function (6-min walk, Timed Up and Go test, and Short Physical Performance Battery (SPPB) score), balance impairment using computerized dynamic posturography with the Sensory Organization Test (SOT), and quality of life (VascuQoL and Short Form 36). Results Fifty-one participants underwent SEP, which significantly improved initial treadmill walking distance (P = 0·001). Enrolment in a SEP also resulted in improvements in physical function as determined by 6-min maximum walking distance (P = 0·006), SPPB score (P < 0·001), and some domains of both generic (bodily pain, P = 0·025) and disease-specific (social domain, P = 0·039) quality of life. Significant improvements were also noted in balance, as determined by the SOT (P < 0·001). Conclusion Supervised exercise improves both physical function and balance impairment
Wakefield damping for the CLIC crab cavity
A crab cavity is required in the CLIC to allow effective head-on collision of
bunches at the IP. A high operating frequency is preferred as the deflection
voltage required for a given rotation angle and the RF phase tolerance for a
crab cavity are inversely proportional to the operating frequency. The short
bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to
dipole kicks demand very high damping of the inter-bunch wakes, the major
contributor to the luminosity loss of colliding bunches. This paper
investigates the nature of the wakefields in the CLIC crab cavity and the
possibility of using various damping schemes to suppress them effectively
Calculation of Finite Size Effects on the Nucleon Mass in Unquenched QCD using Chiral Perturbation Theory
The finite size effects on nucleon masses are calculated in relativistic
chiral perturbation theory. Results are compared with two-flavor lattice
results.Comment: talk at Confinement03, 5 pages latex, 3 figures. Assignment of 2 data
points to incorrect data sets in plot 1 and of 1 data point in plot 2
corrected. 1 fm lattice result updated. Conclusions unchange
Two-neutron transfer in nuclei close to the dripline
We investigate the two-neutron transfer modes induced by (t,p) reactions in
neutron-rich oxygen isotopes. The nuclear response to the pair transfer is
calculated in the framework of continuum-Quasiparticle Random Phase
Approximation (cQRPA). The cQRPA allows a consistent determination of the
residual interaction and an exact treatment of the continuum coupling. The
(t,p) cross sections are calculated within the DWBA approach and the form
factors are evaluated by different methods : macroscopically, following the
Bayman and Kallio method, and fully microscopically. The largest cross section
corresponds to a high-lying collective mode built entirely upon continuum
quasiparticle states.Comment: 12 pages, 7 figure
Quantum phase space picture of Bose-Einstein Condensates in a double well: Proposals for creating macroscopic quantum superposition states and a study of quantum chaos
We present a quantum phase space model of Bose-Einstein condensate (BEC) in a
double well potential. In a two-mode Fock-state analysis we examine the
eigenvectors and eigenvalues and find that the energy correlation diagram
indicates a transition from a delocalized to a fragmented regime. Phase space
information is extracted from the stationary quantum states using the Husimi
distribution function. It is shown that the quantum states are localized on the
known classical phase space orbits of a nonrigid physical pendulum, and thus
the novel phase space characteristics of a nonrigid physical pendulum such as
the motions are seen to be a property of the exact quantum states. Low
lying states are harmonic oscillator like libration states while the higher
lying states are Schr\"odinger cat-like superpositions of two pendulum rotor
states. To study the dynamics in phase space, a comparison is made between a
displaced quantum wavepacket and the trajectories of a swarm of points in
classical phase space. For a driven double well, it is shown that the classical
chaotic dynamics is manifest in the dynamics of the quantum states pictured
using the Husimi distribution. Phase space analogy also suggests that a
phase displaced wavepacket put on the unstable fixed point on a separatrix will
bifurcate to create a superposition of two pendulum rotor states - a
Schr\"odinger cat state (number entangled state) for BEC. It is shown that the
choice of initial barrier height and ramping, following a phase
imprinting on the condensate, can be used to generate controlled entangled
number states with tunable extremity and sharpness.Comment: revised version, 13 pages, 13 figure
Perturbative renormalization factors in domain-wall QCD with improved gauge actions
We evaluate renormalization factors of the domain-wall fermion system with
various improved gauge actions at one loop level. The renormalization factors
are calculated for quark wave function, quark mass, bilinear quark operators,
three- and four-quark operators in modified minimal subtraction (MS-bar) scheme
with the dimensional reduction(DRED) as well as the naive dimensional
regularization(NDR). We also present detailed results in the mean field
improved perturbation theory.Comment: 44 page
Material Characterization and Real-Time Wear Evaluation of Pistons and Cylinder Liners of the Tiger 131 Military Tank
Material characterisation and wear evaluation of the original and replacement pistons and cylinder-liners of Tiger 131 is reported. Original piston and cylinder-liner were operative in the Tigers’ engine during WWII. The replacement piston and cylinder-liner were used as substitutes and were obtained after failure in two hours of operation in the actual engine. Material characterisation revealed that the original piston was aluminium silicon hypereutectic alloy whereas the replacement piston was aluminium copper alloy with very low silicon content. Both original and replacement cylinder-liners consisted of mostly iron which is indicative of cast iron, a common material for this application. The replacement piston average surface roughness was found to be 9.09 μm while for replacement cylinder-liner it was 5.78 μm
- …