13,379 research outputs found

    Two phase transitions in the fully frustrated XYXY model

    Full text link
    The fully frustrated XYXY model on a square lattice is studied by means of Monte Carlo simulations. A Kosterlitz-Thouless transition is found at TKT≈0.446T_{\rm KT} \approx 0.446, followed by an ordinary Ising transition at a slightly higher temperature, Tc≈0.452T_c \approx 0.452. The non-Ising exponents reported by others, are explained as a failure of finite size scaling due to the screening length associated with the nearby Kosterlitz-Thouless transition.Comment: REVTEX file, 8 pages, 5 figures in uuencoded postscrip

    The current-voltage relationship revisited: exact and approximate formulas with almost general validity for hot magnetospheric electrons for bi-Maxwellian and kappa distributions

    No full text
    International audienceWe derive the current-voltage relationship in the auroral region taking into account magnetospheric electrons for the bi-Maxwellian and kappa source plasma distribution functions. The current-voltage formulas have in principle been well known for a long time, but the kappa energy flux formulas have not appeared in the literature before. We give a unified treatment of the bi-Maxwellian and kappa distributions, correcting some errors in previous work. We give both exact results and two kinds of approximate formulas for the current density and the energy flux. The first approximation is almost generally valid and is practical to compute. The first approximation formulas are therefore suitable for use in simulations. In the second approximation we assume in addition that the thermal energy is small compared to the potential drop. This yields even simpler linear formulas which are suitable for many types of event studies and which have a more transparent physical interpretation than the first approximation formulas. We also show how it is possible to derive the first approximation formulas even for those distributions for which the exact results can not be computed analytically. The kappa field-aligned conductance value turns out always to be smaller than the corresponding Maxwellian conductance. We also verify that the obtained kappa current density and energy flux formulas go to Maxwellian results when ???

    A hybrid simulation model for a stable auroral arc

    No full text
    International audienceWe present a new type of hybrid simulation model, intended to simulate a single stable auroral arc in the latitude/altitude plane. The ionospheric ions are treated as particles, the electrons are assumed to follow a Boltzmann response and the magnetospheric ions are assumed to be so hot that they form a background population unaffected by the electric fields that arise. The system is driven by assumed parallel electron energisation causing a primary negative charge cloud and an associated potential structure to build up. The results show how a closed potential structure and density depletion of an auroral arc build up and how they decay after the driver is turned off. The model also produces upgoing energetic ion beams and predicts strong static perpendicular electric fields to be found in a relatively narrow altitude range (~ 5000?11 000 km)

    A case study of electron precipitation in the late substorm growth phase on and nearby a preonset arc

    No full text
    International audienceWe follow the electron precipitation characteristics on and nearby a preonset arc using the high resolution Freja TESP instrument. Our data coverage extends from about 10 min before onset up to 1 min before onset. The arc is the most equatorward one (around MLAT 62°) of a system of growth phase arcs, and it was close to the radiation belt precipitation. Within the preonset arc, inverted-V type precipitation dominates. Poleward of the arc we also find some precipitation regions, and here there is systematically a cold electron population superposed with a warm population. Using single and double Maxwellian fits to the measured electron spectra we find the ionosphere-magnetosphere coupling parameters (field-aligned conductance K and the parallel potential drop V) as well as the effective source plasma properties (density and temperature) during the event. Compared to typical expansion phase features, the preonset parallel potential drop is smaller by a factor of ten, the electron temperature is smaller by a factor of at least five, and the field-aligned conductance is about the same or larger. The fact that there are two isotropic superposed electron populations on the poleward side of the preonset arc suggests that the distance between warm trapped electrons on dipolar field lines and colder electrons on open field lines has become so small near the onset that mixing e.g. due to finite electron Larmor radius effects can take place

    New model for auroral acceleration: O-shaped potential structure cooperating with waves

    No full text
    International audienceThere are recent observational indications (lack of convergent electric field signatures above the auroral oval at 4 RE altitude) that the U-shaped potential drop model for auroral acceleration is not applicable in all cases. There is nevertheless much observational evidence favouring the U-shaped model at low altitudes, i.e., in the acceleration region and below. To resolve the puzzle we propose that there is a negative O-shaped potential well which is maintained by plasma waves pushing the electrons into the loss cone and up an electron potential energy hill at ~3-4RE altitude range. We present a test particle simulation which shows that when the wave energization is modelled by random parallel boosts, introducing an O-shaped potential increases the precipitating energy flux because the electrons can stay in the resonant velocity range for a longer time if a downward electric field decelerates the electrons at the same time when waves accelerate them in the parallel direction. The lower part of the O-shaped potential well is essentially the same as in the U-shaped model. The electron energization comes from plasma waves in this model, but the final low-altitude fluxes are produced by electrostatic acceleration. Thus, the transfer of energy from waves to particles takes places in an "energization region", which is above the acceleration region. In the energization region the static electric field points downward while in the acceleration region it points upward. The model is compatible with the large body of low-altitude observations supporting the U-shaped model while explaining the new observations of the lack of electric field at high altitude

    Constraint-preserving boundary conditions in the 3+1 first-order approach

    Full text link
    A set of energy-momentum constraint-preserving boundary conditions is proposed for the first-order Z4 case. The stability of a simple numerical implementation is tested in the linear regime (robust stability test), both with the standard corner and vertex treatment and with a modified finite-differences stencil for boundary points which avoids corners and vertices even in cartesian-like grids. Moreover, the proposed boundary conditions are tested in a strong field scenario, the Gowdy waves metric, showing the expected rate of convergence. The accumulated amount of energy-momentum constraint violations is similar or even smaller than the one generated by either periodic or reflection conditions, which are exact in the Gowdy waves case. As a side theoretical result, a new symmetrizer is explicitly given, which extends the parametric domain of symmetric hyperbolicity for the Z4 formalism. The application of these results to first-order BSSN-like formalisms is also considered.Comment: Revised version, with conclusive numerical evidence. 23 pages, 12 figure
    • …
    corecore