4,071 research outputs found

    XMM-Newton and Gemini Observations of Eight RASSCALS Galaxy Groups

    Full text link
    We study the distribution of gas pressure and entropy in eight groups of galaxies belonging to the ROSAT All-Sky Survey / Center for Astrophysics Loose Systems (RASSCALS). We use archival and proprietary XMM-Newton observations, supplementing the X-ray data with redshifts derived from the literature; we also list 127 new redshifts measured with the Gemini North telescope. The groups show remarkable self-similarity in their azimuthally averaged entropy and temperature profiles. The entropy increases with radius; the behavior of the entropy profiles is consistent with an increasing broken power law with inner and outer slope 0.92+0.04-0.05 and 0.42+0.05-0.04 (68% confidence), respectively. There is no evidence of a central, isentropic core, and the entropy distribution in most of the groups is flatter at large radii than in the inner region, challenging earlier reports as well as theoretical models predicting large isentropic cores or asymptotic slopes of 1.1 at large radii. The pressure profiles are consistent with a self-similar decreasing broken power law in radius; the inner and outer slopes are -0.78+0.04-0.03 and -1.7+0.1-0.3, respectively. The results suggest that the larger scatter in the entropy distribution reflects the varied gasdynamical histories of the groups; the regularity and self-similarity of the pressure profiles is a sign of a similarity in the underlying dark matter distributions.Comment: Accepted for publication in the Astrophysical Journa

    Earth matter density uncertainty in atmospheric neutrino oscillations

    Full text link
    That muon neutrinos νμ\nu_{\mu} oscillating into the mixture of tau neutrinos ντ\nu_{\tau} and sterile neutrinos νs\nu_{s} has been studied to explain the atmospheric νμ\nu_{\mu} disappearance. In this scenario, the effect of Earth matter is a key to determine the fraction of νs\nu_{s}. Considering that the Earth matter density has uncertainty and this uncertainty has significant effects in some neutrino oscillation cases, such as the CP violation in very long baseline neutrino oscillations and the day-night asymmetry for solar neutrinos, we study the effects caused by this uncertainty in the above atmospheric νμ\nu_{\mu} oscillation scenario. We find that this uncertainty seems to have no significant effects and that the previous fitting results need not to be modified fortunately.Comment: 7 pages, 1 figure, to appear in Phys. Rev.

    Adaptive Density Estimation on the Circle by Nearly-Tight Frames

    Full text link
    This work is concerned with the study of asymptotic properties of nonparametric density estimates in the framework of circular data. The estimation procedure here applied is based on wavelet thresholding methods: the wavelets used are the so-called Mexican needlets, which describe a nearly-tight frame on the circle. We study the asymptotic behaviour of the L2L^{2}-risk function for these estimates, in particular its adaptivity, proving that its rate of convergence is nearly optimal.Comment: 30 pages, 3 figure

    The Blue Stragglers of the Old Open Cluster NGC 188

    Full text link
    The old (7 Gyr) open cluster NGC 188 has yielded a wealth of astrophysical insight into its rich blue straggler population. Specifically, the NGC 188 blue stragglers are characterized by: A binary frequency of 80% for orbital periods less than 10410^4 days;Typical orbital periods around 1000 days;Typical secondary star masses of 0.5 M⊙_{\odot}; At least some white dwarf companion stars; Modestly rapid rotation; A bimodal radial spatial distribution; Dynamical masses greater than standard stellar evolution masses (based on short-period binaries); Under-luminosity for dynamical masses (short-period binaries). Extensive NN-body modeling of NGC 188 with empirical initial conditions reproduces the properties of the cluster, and in particular the main-sequence solar-type binary population. The current models also reproduce well the binary orbital properties of the blue stragglers, but fall well short of producing the observed number of blue stragglers. This deficit could be resolved by reducing the frequency of common-envelope evolution during Roche lobe overflow. Both the observations and the NN-body models strongly indicate that the long-period blue-straggler binaries - which dominate the NGC 188 blue straggler population - are formed by asymptotic-giant (primarily) and red-giant mass transfer onto main sequence stars. The models suggest that the few non-velocity-variable blue stragglers formed from mergers or collisions. Several remarkable short-period double-lined binaries point to the importance of subsequent dynamical exchange encounters, and provide at least one example of a likely collisional origin for a blue straggler.Comment: Chapter 3, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G. Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe

    Completeness in Photometric and Spectroscopic Searches for Clusters

    Get PDF
    We investigate, using simulated galaxy catalogues, the completeness of searches for massive clusters of galaxies in redshift surveys or imaging surveys with photometric redshift estimates, i.e. what fraction of clusters (M>10^14/h Msun) are found in such surveys. We demonstrate that the matched filter method provides an efficient and reliable means of identifying massive clusters even when the redshift estimates are crude. In true redshift surveys the method works extremely well. We demonstrate that it is possible to construct catalogues with high completeness, low contamination and both varying little with redshift.Comment: ApJ in press, 15 pages, 10 figure

    Weak antilocalization in a 2D electron gas with the chiral splitting of the spectrum

    Full text link
    Motivated by the recent observation of the metal-insulator transition in Si-MOSFETs we consider the quantum interference correction to the conductivity in the presence of the Rashba spin splitting. For a small splitting, a crossover from the localizing to antilocalizing regime is obtained. The symplectic correction is revealed in the limit of a large separation between the chiral branches. The relevance of the chiral splitting for the 2D electron gas in Si-MOSFETs is discussed.Comment: 7 pages, REVTeX. Mistake corrected; in the limit of a large chiral splitting the correction to the conductivity does not vanish but approaches the symplectic valu
    • …
    corecore