29,568 research outputs found

    Super-resolution imaging of a low frequency levitated oscillator

    Get PDF
    We describe the measurement of the secular motion of a levitated nanoparticle in a Paul trap with a CMOS camera. This simple method enables us to reach signal-to-noise ratios as good as 106^{6} with a displacement sensitivity better than 1016m2^{-16}\,m^{2}/Hz. This method can be used to extract trap parameters as well as the properties of the levitated particles. We demonstrate continuous monitoring of the particle dynamics on timescales of the order of weeks. We show that by using the improvement given by super-resolution imaging, a significant reduction in the noise floor can be attained, with an increase in the bandwidth of the force sensitivity. This approach represents a competitive alternative to standard optical detection for a range of low frequency oscillators where low optical powers are require

    Testing collapse models with levitated nanoparticles: the detection challenge

    Get PDF
    We consider a nanoparticle levitated in a Paul trap in ultrahigh cryogenic vacuum, and look for the conditions which allow for a stringent noninterferometric test of spontaneous collapse models. In particular we compare different possible techniques to detect the particle motion. Key conditions which need to be achieved are extremely low residual pressure and the ability to detect the particle at ultralow power. We compare three different detection approaches based respectively on a optical cavity, optical tweezer and a electrical readout, and for each one we assess advantages, drawbacks and technical challenges

    Cavity cooling of an optically trapped nanoparticle

    Full text link
    We study the cooling of a dielectric nanoscale particle trapped in an optical cavity. We derive the frictional force for motion in the cavity field, and show that the cooling rate is proportional to the square of oscillation amplitude and frequency. Both the radial and axial centre-of-mass motion of the trapped particle, which are coupled by the cavity field, are cooled. This motion is analogous to two coupled but damped pendulums. Our simulations show that the nanosphere can be cooled to 1/e of its initial momentum over time scales of hundredths of milliseconds.Comment: 11 page

    The Making of Cloud Applications An Empirical Study on Software Development for the Cloud

    Full text link
    Cloud computing is gaining more and more traction as a deployment and provisioning model for software. While a large body of research already covers how to optimally operate a cloud system, we still lack insights into how professional software engineers actually use clouds, and how the cloud impacts development practices. This paper reports on the first systematic study on how software developers build applications in the cloud. We conducted a mixed-method study, consisting of qualitative interviews of 25 professional developers and a quantitative survey with 294 responses. Our results show that adopting the cloud has a profound impact throughout the software development process, as well as on how developers utilize tools and data in their daily work. Among other things, we found that (1) developers need better means to anticipate runtime problems and rigorously define metrics for improved fault localization and (2) the cloud offers an abundance of operational data, however, developers still often rely on their experience and intuition rather than utilizing metrics. From our findings, we extracted a set of guidelines for cloud development and identified challenges for researchers and tool vendors

    An Alternative Parameterization of R-matrix Theory

    Get PDF
    An alternative parameterization of R-matrix theory is presented which is mathematically equivalent to the standard approach, but possesses features which simplify the fitting of experimental data. In particular there are no level shifts and no boundary-condition constants which allows the positions and partial widths of an arbitrary number levels to be easily fixed in an analysis. These alternative parameters can be converted to standard R-matrix parameters by a straightforward matrix diagonalization procedure. In addition it is possible to express the collision matrix directly in terms of the alternative parameters.Comment: 8 pages; accepted for publication in Phys. Rev. C; expanded Sec. IV, added Sec. VI, added Appendix, corrected typo

    Shaking a Box of Sand

    Full text link
    We present a simple model of a vibrated box of sand, and discuss its dynamics in terms of two parameters reflecting static and dynamic disorder respectively. The fluidised, intermediate and frozen (`glassy') dynamical regimes are extensively probed by analysing the response of the packing fraction to steady, as well as cyclic, shaking, and indicators of the onset of a `glass transition' are analysed. In the `glassy' regime, our model is exactly solvable, and allows for the qualitative description of ageing phenomena in terms of two characteristic lengths; predictions are also made about the influence of grain shape anisotropy on ageing behaviour.Comment: Revised version. To appear in Europhysics Letter

    The 8^8B Neutrino Spectrum

    Full text link
    Knowledge of the energy spectrum of 8^8B neutrinos is an important ingredient for interpreting experiments that detect energetic neutrinos from the Sun. The neutrino spectrum deviates from the allowed approximation because of the broad alpha-unstable 8^8Be final state and recoil order corrections to the beta decay. We have measured the total energy of the alpha particles emitted following the beta decay of 8^8B. The measured spectrum is inconsistent with some previous measurements, in particular with a recent experiment of comparable precision. The beta decay strength function for the transition from 8^8B to the accessible excitation energies in 8^8Be is fit to the alpha energy spectrum using the R-matrix approach. Both the positron and neutrino energy spectra, corrected for recoil order effects, are constructed from the strength function. The positron spectrum is in good agreement with a previous direct measurement. The neutrino spectrum disagrees with previous experiments, particularly for neutrino energies above 12 MeV.Comment: 15 pages, 13 figures, 4 tables, submitted to Phys. Rev. C, typos correcte

    Probing the superconducting ground state of the rare-earth ternary boride superconductors RRRuB2_2 (RR = Lu,Y) using muon-spin rotation and relaxation

    Get PDF
    The superconductivity in the rare-earth transition metal ternary borides RRRuB2_2 (where RR = Lu and Y) has been investigated using muon-spin rotation and relaxation. Measurements made in zero-field suggest that time-reversal symmetry is preserved upon entering the superconducting state in both materials; a small difference in depolarization is observed above and below the superconducting transition in both compounds, however this has been attributed to quasistatic magnetic fluctuations. Transverse-field measurements of the flux-line lattice indicate that the superconductivity in both materials is fully gapped, with a conventional s-wave pairing symmetry and BCS-like magnitudes for the zero-temperature gap energies. The electronic properties of the charge carriers in the superconducting state have been calculated, with effective masses m/me=m^*/ m_\mathrm{e} = 9.8±0.19.8\pm0.1 and 15.0±0.115.0\pm0.1 in the Lu and Y compounds, respectively, with superconducting carrier densities ns=n_\mathrm{s} = (2.73±0.042.73\pm0.04) ×1028\times 10^{28} m3^{-3} and (2.17±0.022.17\pm0.02) ×1028\times 10^{28} m3^{-3}. The materials have been classified according to the Uemura scheme for superconductivity, with values for Tc/TFT_\mathrm{c}/T_\mathrm{F} of 1/(414±6)1/(414\pm6) and 1/(304±3)1/(304\pm3), implying that the superconductivity may not be entirely conventional in nature.Comment: 8 pages, 8 figure

    Glassy dynamics in granular compaction

    Full text link
    Two models are presented to study the influence of slow dynamics on granular compaction. It is found in both cases that high values of packing fraction are achieved only by the slow relaxation of cooperative structures. Ongoing work to study the full implications of these results is discussed.Comment: 12 pages, 9 figures; accepted in J. Phys: Condensed Matter, proceedings of the Trieste workshop on 'Unifying concepts in glass physics
    corecore