16 research outputs found
Virion structure and genome delivery mechanism of sacbrood honeybee virus
Infection by sacbrood virus (SBV) from the family Iflaviridae is lethal to honey bee larvae but only rarely causes the collapse of honey bee colonies. Despite the negative effect of SBV on honey bees, the structure of its particles and mechanism of its genome delivery are unknown. Here we present the crystal structure of SBV virion and show that it contains 60 copies of a minor capsid protein (MiCP) attached to the virion surface. No similar MiCPs have been previously reported in any of the related viruses from the order Picornavirales. The location of the MiCP coding sequence within the SBV genome indicates that the MiCP evolved from a C-terminal extension of a major capsid protein by the introduction of a cleavage site for a virus protease. The exposure of SBV to acidic pH, which the virus likely encounters during cell entry, induces the formation of pores at threefold and fivefold axes of the capsid that are 7 angstrom and 12 angstrom in diameter, respectively. This is in contrast to vertebrate picornaviruses, in which the pores along twofold icosahedral symmetry axes are currently considered the most likely sites for genome release. SBV virions lack VP4 subunits that facilitate the genome delivery of many related dicistroviruses and picornaviruses. MiCP subunits induce liposome disruption in vitro, indicating that they are functional analogs of VP4 subunits and enable the virus genome to escape across the endosome membrane into the cell cytoplasm
Abstract OR-7: Genome Release Mechanism of Picorna-Like Viruses
Protein capsids protect the genomes of viruses from degradation in the extracellular environment. However, virus capsids must release genomes into a host cell to initiate infection. We used cryo-electron microscopy to characterize the genome release of viruses from the order Picornavirales: picornaviruses, dicistroviruses, and iflaviruses. These virus families include numerous human and animal pathogens. The viruses have non-enveloped virions and capsids organized with icosahedral symmetry. Their genome release can be induced in vitro by exposure to acidic pH, mimicking conditions in endosomes. We show that conformational changes of capsids and expansion of viral RNA genomes, which are induced by acidic pH, trigger the opening of picorna-like virus particles. The capsids of the studied viruses crack into pieces or open like flowers to release their genomes. The large openings of capsids enable the virus genomes to exit within microseconds, which limits the probability of their degradation by the RNases. Characterization of the virus genome release is the first step towards developing inhibitors of the process
Virion structure of Iflavirus Slow bee paralysis virus at 2.6-Angstrom resolution
The western honeybee (Apis mellifera) is the most important commercial insect pollinator. However, bees are under pressure from habitat loss, environmental stress, and pathogens, including viruses that can cause lethal epidemics. Slow bee paralysis virus (SBPV) belongs to the Iflaviridae family of nonenveloped single-stranded RNA viruses. Here we present the structure of the SBPV virion determined from two crystal forms to resolutions of 3.4 angstrom and 2.6 angstrom. The overall structure of the virion resembles that of picornaviruses, with the three major capsid proteins VP1 to 3 organized into a pseudo-T3 icosahedral capsid. However, the SBPV capsid protein VP3 contains a C-terminal globular domain that has not been observed in other viruses from the order Picornavirales. The protruding (P) domains form "crowns" on the virion surface around each 5-fold axis in one of the crystal forms. However, the P domains are shifted 36 angstrom toward the 3-fold axis in the other crystal form. Furthermore, the P domain contains the Ser-His-Asp triad within a surface patch of eight conserved residues that constitutes a putative catalytic or receptor-binding site. The movements of the domain might be required for efficient substrate cleavage or receptor binding during virus cell entry. In addition, capsid protein VP2 contains an RGD sequence that is exposed on the virion surface, indicating that integrins might be cellular receptors of SBPV.IMPORTANCEPollination by honeybees is needed to sustain agricultural productivity as well as the biodiversity of wild flora. However, honey-bee populations in Europe and North America have been declining since the 1950s. Honeybee viruses from the Iflaviridae family are among the major causes of honeybee colony mortality. We determined the virion structure of an Iflavirus, slow bee paralysis virus (SBPV). SBPV exhibits unique structural features not observed in other picorna-like viruses. The SBPV capsid protein VP3 has a large C-terminal domain, five of which form highly prominent protruding "crowns" on the virion surface. However, the domains can change their positions depending on the conditions of the environment. The domain includes a putative catalytic or receptor binding site that might be important for SBPV cell entry
Condition and Honey Productivity of Honeybee Colonies Depending on Type of Supplemental Feed for Overwintering
Harvested honey is usually replaced by an alternative sugar to overwinter honeybee colonies. Supplementation of winter stores with beet or cane sucrose is safe for colonies and does not cause winter mortality. Despite this, there are hypotheses that supplementation of inverted sugars has the potential to give better results in overwintering, spring growth, and honey production of the colonies, because bees are consuming already cleaved feed. Therefore, we compared the condition parameters and honey production in 70 colonies at four apiaries overwintered with stores from sucrose or inverted sugars. No statistically significant differences in dependence on the type of the supplemental feed were found. Inverted sugar was more expensive than sucrose for feeding colonies. Economic efficiency, physiological consequences, and other disadvantages of using invert syrups are discussed
Cryo-electron Microscopy Study of the Genome Release of the Dicistrovirus Israeli Acute Bee Paralysis Virus.
Viruses of the family Dicistroviridae can cause substantial economic damage by infecting agriculturally important insects. Israeli acute bee paralysis virus (IAPV) causes honeybee colony collapse disorder in the United States. High-resolution molecular details of the genome delivery mechanism of dicistroviruses are unknown. Here we present a cryo-electron microscopy analysis of IAPV virions induced to release their genomes in vitro We determined structures of full IAPV virions primed to release their genomes to a resolution of 3.3 Å and of empty capsids to a resolution of 3.9 Å. We show that IAPV does not form expanded A particles before genome release as in the case of related enteroviruses of the family Picornaviridae The structural changes observed in the empty IAPV particles include detachment of the VP4 minor capsid proteins from the inner face of the capsid and partial loss of the structure of the N-terminal arms of the VP2 capsid proteins. Unlike the case for many picornaviruses, the empty particles of IAPV are not expanded relative to the native virions and do not contain pores in their capsids that might serve as channels for genome release. Therefore, rearrangement of a unique region of the capsid is probably required for IAPV genome release
Virion Structure of Israeli Acute Bee Paralysis Virus
The pollination services provided by the western honeybee (Apis mellifera) are critical for agricultural production and the diversity of wild flowering plants. However, honeybees suffer from environmental pollution, habitat loss, and pathogens, including viruses that can cause fatal diseases. Israeli acute bee paralysis virus (IAPV), from the family Dicistroviridae, has been shown to cause colony collapse disorder in the United States. Here, we present the IAPV virion structure determined to a resolution of 4.0 angstrom and and the structure of a pentamer of capsid protein protomers at a resolution of 2.7 angstrom. IAPV has major capsid proteins VP1 and VP3 with noncanonical jellyroll beta-barrel folds composed of only seven instead of eight beta-strands, as is the rule for proteins of other viruses with the same fold. The maturation of dicistroviruses is connected to the cleavage of precursor capsid protein VP0 into subunits VP3 and VP4. We show that a putative catalytic site formed by the residues Asp-Asp-Phe of VP1 is optimally positioned to perform the cleavage. Furthermore, unlike many picornaviruses, IAPV does not contain a hydrophobic pocket in capsid protein VP1 that could be targeted by capsid-binding antiviral compounds.
Honeybee pollination is required for agricultural production and to sustain the biodiversity of wild flora. However, honeybee populations in Europe and North America are under pressure from pathogens, including viruses that cause colony losses. Viruses from the family Dicistroviridae can cause honeybee infections that are lethal, not only to individual honeybees, but to whole colonies. Here, we present the virion structure of an Aparavirus, Israeli acute bee paralysis virus (IAPV), a member of a complex of closely related viruses that are distributed worldwide. IAPV exhibits unique structural features not observed in other picorna-like viruses. Capsid protein VP1 of IAPV does not contain a hydrophobic pocket, implying that capsid-binding antiviral compounds that can prevent the replication of vertebrate picornaviruses may be ineffective against honeybee virus infections
Application of the selected physical methods in biological research
This paper deals with the application of acoustic emission (AE), which is a part of the non-destructive methods, currently having an extensive application. This method is used for measuring the internal defects of materials. AE has a high potential in further research and development to extend the application of this method even in the field of process engineering. For that matter, it is the most elaborate acoustic emission monitoring in laboratory conditions with regard to external stimuli. The aim of the project is to apply the acoustic emission recording the activity of bees in different seasons. The mission is to apply a new perspective on the behavior of colonies by means of acoustic emission, which collects a sound propagation in the material. Vibration is one of the integral part of communication in the community. Sensing colonies with the support of this method is used for understanding of colonies biological behavior to stimuli clutches, colony development etc. Simulating conditions supported by acoustic emission monitoring system the illustrate colonies activity. Collected information will be used to represent a comprehensive view of the life cycle and behavior of honey bees (Apis mellifera). Use of information about the activities of bees gives a comprehensive perspective on using of acoustic emission in the field of biological research
The Acoustic Emission in the Nest of the Honey Bee Depending on the Extreme Weather Conditions
The vibroacoustic signals are an important part of communication in the honey bees (Apis mellifera L.). The aim of this study was to observe the acoustic emission that varies in a bee colony during different weather phenomena (strong winds and hailstorms) and to estimate the nature and the extent of the reactions of the colony by the analysis of the obtained data. Experiments were carried out in the volume-reduced hives. The specific weather phenomena were followed by significant (P < 0.0001) increasing of the intensity of the acoustic emission in the colony in comparison with acoustic emission before or after the phenomena. Close linear positive relationship was confirmed between the intensity of wind gusts and intensity of acoustic emission (r = 0.72; P < 0.001). With the increase in the maximum gust of 1 km·h−1, the intensity of acoustic emission increased by 0.1466 mV. The character and degree of reaction of the colony can be estimated with analysis of the measured data. Permeability of vibration signals directly induced weather phenomena through the construction of the experimental hive and the stress in the colony are discussed. Observation of the acoustic emission distributed within the colony is one of the methodical alternatives for research of the vibroacoustic communication in the colony
Haplotype Diversity in mtDNA of Honeybee in the Czech Republic Confirms Complete Replacement of Autochthonous Population with the C Lineage
The study aimed to analyze the genetic diversity in the Czech population of Apis mellifera using mitochondrial DNA markers, tRNAleu-cox2 intergenic region and cox1 gene. A total of 308 samples of bees were collected from the entire Czech Republic (from colonies and flowers in 13 different regions). Following sequencing, several polymorphisms and haplotypes were identified. Analysis of tRNAleu-cox2 sequences revealed three DraI haplotypes (C, A1, and A4). The tRNAleu-cox2 region yielded 10 C lineage haplotypes, one of which is a newly described variant. Three A lineage haplotypes were identified, two of which were novel. A similar analysis of cox1 sequences yielded 16 distinct haplotypes (7 new) within the population. The most prevalent tRNAleu-cox2 haplotype identified was C1a, followed by C2a, C2c, C2l, and C2d. For the cox1 locus, the most frequent haplotypes were HpB02, HpB01, HpB03, and HpB04. The haplotype and nucleotide diversity indices were high in both loci, in tRNAleu-cox2 with values of 0.682 and 0.00172, respectively, and in cox1 0.789 and 0.00203, respectively. The Tajima’s D values were negative and lower in tRNAleu-cox2 than in cox1. The most frequent haplotypes were uniformly distributed across all regions of the Czech Republic. No haplotype of the indigenous M lineage was identified. High diversity and the occurrence of rare haplotypes indicate population expansion and continuous import of tribal material of the C lineage