15 research outputs found

    The artificial oxygen carrier erythrocruorin—characteristics and potential significance in medicine

    Get PDF
    The diminishing supply and increasing costs of donated blood have motivated research into novel hemoglobin-based oxygen carriers (HBOCs) that can serve as red blood cell (RBC) substitutes. HBOCs are versatile agents that can be used in the treatment of hemorrhagic shock. However, many of the RBC substitutes that are based on mammalian hemoglobins have presented key limitations such as instability and toxicity. In contrast, erythrocruorins (Ecs) are other types of HBOCs that may not suffer these disadvantages. Ecs are giant metalloproteins found in annelids, crustaceans, and some other invertebrates. Thus far, the Ecs of Lumbricus terrestris (LtEc) and Arenicola marina (AmEc) are the most thoroughly studied. Based on data from preclinical transfusion studies, it was found that these compounds not only efficiently transport oxygen and have anti-inflammatory properties, but also can be modified to further increase their effectiveness. This literature review focuses on the structure, properties, and application of Ecs, as well as their advantages over other HBOCs. Development of methods for both the stabilization and purification of erythrocruorin could confer to enhanced access to artificial blood resources

    WWOX expression in colorectal cancer—a real-time quantitative RT-PCR study

    Get PDF
    The WWOX gene is a tumour suppressor gene affected in various types of malignancies. Numerous studies showed either loss or reduction of the WWOX expression in variety of tumours, including breast, ovary, liver, stomach and pancreas. Recent study demonstrated that breast cancer patients exhibiting higher WWOX expression showed significantly longer disease-free survival in contrast to the group with lower relative WWOX level. This work was undertaken to show whether similar phenomena take place in colon tumours and cell lines. To assess the correlation of WWOX gene expression with prognosis and cancer recurrence in 99 colorectal cancer patients, we performed qRT-PCR analysis. We also performed analysis of WWOX promoter methylation status using MethylScreen method and analysis of loss of heterozygosity (LOH) status at two WWOX-related loci, previously shown to be frequently deleted in various types of tumours. A significantly better disease-free survival was observed among patients with tumours exhibiting high level of WWOX (hazard ratio = 0.39; p = 0.0452; Mantel–Cox log-rank test), but in multivariate analysis it was not an independent prognostic factor. We also found that although in colorectal cancer WWOX expression varies among patients and correlates with DFS, the exact mode of decrease in this type of tumour was not found. We failed to find the evidence of LOH in WWOX region, or hypermethylation in promoter regions of this gene. Although we provide the evidence for tumour-suppressive role of WWOX gene expression in colon, we were unable to identify the molecular mechanism responsible for this

    Fragile Gene WWOX Guides TFAP2A/TFAP2C-Dependent Actions Against Tumor Progression in Grade II Bladder Cancer

    Get PDF
    IntroductionThe presence of common fragile sites is associated with no-accidental chromosomal instability which occurs prior to carcinogenesis. The WWOX gene spans the second most active fragile site: FRA16D. Chromosomal breakage at this site is more common in bladder cancer patients who are tobacco smokers which suggests the importance of WWOX gene loss regarding bladder carcinogenesis. Tryptophan domains of WWOX are known to recognize motifs of other proteins such as AP-2α and AP-2γ allowing protein-protein interactions. While the roles of both AP-2 transcription factors are important for bladder carcinogenesis, their nature is different. Based on the literature, AP-2γ appears to be oncogenic, whereas AP-2α mainly exhibits tumor suppressor character. Presumably, the interaction between WWOX and both transcription factors regulates thousands of genes, hence the aim of the present study was to determine WWOX, AP-2α, and AP-2γ function in modulating biological processes of bladder cancer.MethodsRT-112 cell line (grade II bladder cancer) was subjected to two stable lentiviral transductions. Overall, this resulted in six variants to investigate distinct WWOX, AP-2α, or AP-2γ function as well as WWOX in collaboration with a particular transcription factor. Cellular models were examined with immunocytochemical staining and in terms of differences in biological processes using assays investigating cell viability, proliferation, apoptosis, adhesion, clonogenicity, migration, activity of metalloproteinases and 3D culture growth.ResultsWWOX overexpression increased apoptosis but decreased cell viability, migration and large spatial colonies. AP-2α overexpression decreased tumor cell viability, migratory potential, matrix metalloproteinase-2 activity and clonogenicity. AP-2γ overexpression decreased matrix metalloproteinase-2 activity but increased wound healing, adhesion, clonogenicity and spatial colony formation. WWOX and AP-2α overexpression induced apoptosis but decreased cell viability, adhesion, matrix metalloproteinase-2 activity, overall number of cultured colonies and migration rate. WWOX and AP-2γ overexpression decreased tumor cell viability, proliferation potential, adhesion, clonogenicity and the ability to create spatial structures, but also increased apoptosis or migration rate.ConclusionCo-overexpression of WWOX with AP-2α or WWOX with AP-2γ resulted in a net anti-tumor effect. However, considering this research findings and the difference between AP-2α and AP-2γ, we suggest that this similarity is due to a divergent behavior of WWOX

    PLEK2, RRM2, GCSH: A Novel WWOX-Dependent Biomarker Triad of Glioblastoma at the Crossroads of Cytoskeleton Reorganization and Metabolism Alterations

    No full text
    Glioblastoma is one of the deadliest human cancers. Its malignancy depends on cytoskeleton reorganization, which is related to, e.g., epithelial-to-mesenchymal transition and metastasis. The malignant phenotype of glioblastoma is also affected by the WWOX gene, which is lost in nearly a quarter of gliomas. Although the role of WWOX in the cytoskeleton rearrangement has been found in neural progenitor cells, its function as a modulator of cytoskeleton in gliomas was not investigated. Therefore, this study aimed to investigate the role of WWOX and its collaborators in cytoskeleton dynamics of glioblastoma. Methodology on RNA-seq data integrated the use of databases, bioinformatics tools, web-based platforms, and machine learning algorithm, and the obtained results were validated through microarray data. PLEK2, RRM2, and GCSH were the most relevant WWOX-dependent genes that could serve as novel biomarkers. Other genes important in the context of cytoskeleton (BMP4, CCL11, CUX2, DUSP7, FAM92B, GRIN2B, HOXA1, HOXA10, KIF20A, NF2, SPOCK1, TTR, UHRF1, and WT1), metabolism (MTHFD2), or correlation with WWOX (COL3A1, KIF20A, RNF141, and RXRG) were also discovered. For the first time, we propose that changes in WWOX expression dictate a myriad of alterations that affect both glioblastoma cytoskeleton and metabolism, rendering new therapeutic possibilities

    WWOX Loses the Ability to Regulate Oncogenic AP-2γ and Synergizes with Tumor Suppressor AP-2α in High-Grade Bladder Cancer

    No full text
    The cytogenic locus of the WWOX gene overlaps with the second most active fragile site, FRA16D, which is present at a higher frequency in bladder cancer (BLCA) patients with smoking habit, a known risk factor of this tumor. Recently, we demonstrated the relevance of the role of WWOX in grade 2 BLCA in collaboration with two AP-2 transcription factors whose molecular actions supported or opposed pro-cancerous events, suggesting a distinct character. As further research is needed on higher grades, the aim of the present study was to examine WWOX-AP-2 functionality in grade 3 and 4 BLCA using equivalent in vitro methodology with additional transcriptome profiling of cellular variants. WWOX and AP-2α demonstrated similar anti-cancer functionality in most biological processes with subtle differences in MMP-2/9 regulation; this contradicted that of AP-2γ, whose actions potentiated cancer progression. Simultaneous overexpression of WWOX and AP-2α/AP-2γ revealed that single discrepancies appear in WWOX-AP-2α collaboration but only at the highest BLCA grade; WWOX-AP-2α collaboration was considered anti-cancer. However, WWOX only appeared to have residual activity against oncogenic AP-2γ in grade 3 and 4: variants with either AP-2γ overexpression alone or combined WWOX and AP-2γ overexpression demonstrated similar pro-tumoral behavior. Transcriptome profiling with further gene ontology certified biological processes investigated in vitro and indicated groups of genes consisting of AP-2 targets and molecules worth investigation as biomarkers. In conclusion, tumor suppressor synergism between WWOX and AP-2α is unimpaired in high-grade BLCA compared to intermediate grade, yet the ability of WWOX to guide oncogenic AP-2γ is almost completely lost

    The correlation analysis of WWOX expression and cancer related genes in neuroblastoma- a real time RT-PCR study

    No full text
    Neuroblastoma is one of the most common paediatric cancers, described as unpredictable due to diverse patterns of behaviour. WWOX is a tumour suppressor gene whose expression is reduced in many tumour types. Loss of its expression was shown to correlate with more aggressive disease stage and mortality rate. The aim of this study was to investigate the role of the WWOX tumour suppressor gene in neuroblastoma formation. We performed real-time RT-PCR to analyse levels of WWOX expression in 22 neuroblastic tumour samples in correlation with genes involved in cell cycle regulation (CCNE1, CCND1), proliferation (MKI67), apoptosis (BCL2, BIRC5, BAX) and signal transduction (EGFR, ERBB4). We also evaluated two potential mechanisms - promoter methylation (MethylScreen method) and loss of heterozygosity (LOH) status, which could be connected with regulation of WWOX gene expression. We found a positive correlation between WWOX gene and BCL2 and HER4 JM-a and negative with cyclin D1 and E1. Our observations are consistent with previous findings and emphasise the role of WWOX in cell cycle and apoptosis regulation. Moreover, strong positive association with HER4 JM-a in this tumour type may indicate a role for WWOX in neuroblastoma cell differentiation. The presented results indicate that LOH in locus D16S3096 (located in intron 8) may be involved in the regulation of WWOX mRNAexpression. However, no association between methylation status of WWOX promoter and its expression was observed

    Determination of WWOX Function in Modulating Cellular Pathways Activated by AP-2α and AP-2γ Transcription Factors in Bladder Cancer

    No full text
    Following the invention of high-throughput sequencing, cancer research focused on investigating disease-related alterations, often inadvertently omitting tumor heterogeneity. This research was intended to limit the impact of heterogeneity on conclusions related to WWOX/AP-2α/AP-2γ in bladder cancer which differently influenced carcinogenesis. The study examined the signaling pathways regulated by WWOX-dependent AP-2 targets in cell lines as biological replicates using high-throughput sequencing. RT-112, HT-1376 and CAL-29 cell lines were subjected to two stable lentiviral transductions. Following CAGE-seq and differential expression analysis, the most important genes were identified and functionally annotated. Western blot was performed to validate the selected observations. The role of genes in biological processes was assessed and networks were visualized. Ultimately, principal component analysis was performed. The studied genes were found to be implicated in MAPK, Wnt, Ras, PI3K-Akt or Rap1 signaling. Data from pathways were collected, explaining the differences/similarities between phenotypes. FGFR3, STAT6, EFNA1, GSK3B, PIK3CB and SOS1 were successfully validated at the protein level. Afterwards, a definitive network was built using 173 genes. Principal component analysis revealed that the various expression of these genes explains the phenotypes. In conclusion, the current study certified that the signaling pathways regulated by WWOX and AP-2α have more in common than that regulated by AP-2γ. This is because WWOX acts as an EMT inhibitor, AP-2γ as an EMT enhancer while AP-2α as a MET inducer. Therefore, the relevance of AP-2γ in targeted therapy is now more evident. Some of the differently regulated genes can find application in bladder cancer treatment

    MicroRNAs: Their Role in Metastasis, Angiogenesis, and the Potential for Biomarker Utility in Bladder Carcinomas

    No full text
    Angiogenesis is the process of generating new capillaries from pre-existing blood vessels with a vital role in tumor growth and metastasis. MicroRNAs (miRNAs) are noncoding RNAs that exert post-transcriptional control of protein regulation. They participate in the development and progression of several cancers including bladder cancer (BLCA). In cancer tissue, changes in microRNA expression exhibit tissue specificity with high levels of stability and detectability. miRNAs are less vulnerable to degradation, making them novel targets for therapeutic approaches. A suitable means of targeting aberrant activated signal transduction pathways in carcinogenesis of BLCA is possibly through altering the expression of key miRNAs that regulate them, exerting a strong effect on signal transduction. Precaution must be taken, as the complexity of miRNA regulation might result in targeting several downstream tumor suppressors or oncogenes, enhancing the effect further. Since exosomes contain both mRNA and miRNA, they could therefore possibly be more effective in targeting a recipient cell if they deliver a specific miRNA to modify the recipient cell protein production and gene expression. In this review, we discuss the molecules that have been shown to play a significant role in BLCA tumor development. We also discuss the roles of various miRNAs in BLCA angiogenesis and metastasis. Advances in the management of metastatic BLCA have been limited; miRNA mimics and molecules targeted at miRNAs (anti-miRs) as well as exosomes could serve as therapeutic modalities or as diagnostic biomarkers

    The <i>WWOX/HIF1A</i> Axis Downregulation Alters Glucose Metabolism and Predispose to Metabolic Disorders

    No full text
    Recent reports indicate that the hypoxia-induced factor (HIF1α) and the Warburg effect play an initiating role in glucotoxicity, which underlies disorders in metabolic diseases. WWOX has been identified as a HIF1α regulator. WWOX downregulation leads to an increased expression of HIF1α target genes encoding glucose transporters and glycolysis’ enzymes. It has been proven in the normoglycemic mice cells and in gestational diabetes patients. The aim of the study was to determine WWOX’s role in glucose metabolism regulation in hyperglycemia and hypoxia to confirm its importance in the development of metabolic disorders. For this purpose, the WWOX gene was silenced in human normal fibroblasts, and then cells were cultured under different sugar and oxygen levels. Thereafter, it was investigated how WWOX silencing alters the genes and proteins expression profile of glucose transporters and glycolysis pathway enzymes, and their activity. In normoxia normoglycemia, higher glycolysis genes expression, their activity, and the lactate concentration were observed in WWOX KO fibroblasts in comparison to control cells. In normoxia hyperglycemia, it was observed a decrease of insulin-dependent glucose uptake and a further increase of lactate. It likely intensifies hyperglycemia condition, which deepen the glucose toxic effect. Then, in hypoxia hyperglycemia, WWOX KO caused weaker glucose uptake and elevated lactate production. In conclusion, the WWOX/HIF1A axis downregulation alters glucose metabolism and probably predispose to metabolic disorders

    AP-2&delta; Is the Most Relevant Target of AP-2 Family-Focused Cancer Therapy and Affects Genome Organization

    No full text
    Formerly hailed as &ldquo;undruggable&rdquo; proteins, transcription factors (TFs) are now under investigation for targeted therapy. In cancer, this may alter, inter alia, immune evasion or replicative immortality, which are implicated in genome organization, a process that accompanies multi-step tumorigenesis and which frequently develops in a non-random manner. Still, targeting-related research on some TFs is scarce, e.g., among AP-2 proteins, which are known for their altered functionality in cancer and prognostic importance. Using public repositories, bioinformatics tools, and RNA-seq data, the present study examined the ligandability of all AP-2 members, selecting the best one, which was investigated in terms of mutations, targets, co-activators, correlated genes, and impact on genome organization. AP-2 proteins were found to have the conserved &ldquo;TF_AP-2&rdquo; domain, but manifested different binding characteristics and evolution. Among them, AP-2&delta; has not only the highest number of post-translational modifications and extended strands but also contains a specific histidine-rich region and cleft that can receive a ligand. Uterine, colon, lung, and stomach tumors are most susceptible to AP-2&delta; mutations, which also co-depend with cancer hallmark genes and drug targets. Considering AP-2&delta; targets, some of them were located proximally in the spatial genome or served as co-factors of the genes regulated by AP-2&delta;. Correlation and functional analyses suggested that AP-2&delta; affects various processes, including genome organization, via its targets; this has been eventually verified in lung adenocarcinoma using expression and immunohistochemistry data of chromosomal conformation-related genes. In conclusion, AP-2&delta; affects chromosomal conformation and is the most appropriate target for cancer therapy focused on the AP-2 family
    corecore