17 research outputs found

    Spin structure relation to phase contrast imaging of isolated magnetic Bloch and Neel skyrmions

    Full text link
    Magnetic skyrmions are promising candidates for future storage devices with a large data density. A great variety of materials have been found that host skyrmions up to the room-temperature regime. Lorentz microscopy, usually performed in a transmission electron microscope (TEM), is one of the most important tools for characterizing skyrmion samples in real space. Using numerical calculations, this work relates the phase contrast in a TEM to the actual magnetization profile of an isolated Neel or Bloch skyrmion, the two most common skyrmion types. Within the framework of the used skyrmion model, the results are independent of skyrmion size and wall width and scale with sample thickness for purely magnetic specimens. Simple rules are provided to extract the actual skyrmion configuration of pure Bloch or Neel skyrmions without the need of simulations. Furthermore, first differential phase contrast (DPC) measurements on Neel skyrmions that meet experimental expectations are presented and showcase the described principles. The work is relevant for material sciences where it enables the engineering of skyrmion profiles via convenient characterization.Comment: 6 pages, 3 figure

    Entropy-limited topological protection of skyrmions

    Get PDF
    Magnetic skyrmions are topologically protected whirls that decay through singular magnetic configurations known as Bloch points. We used Lorentz transmission electron microscopy to infer the energetics associated with the topological decay of magnetic skyrmions far from equilibrium in the chiral magnet Fe1-xCoxSi. We observed that the lifetime tau of the skyrmions depends exponentially on temperature, tau similar to tau(0) exp(Delta E/k(B)T). The prefactor tau(0) of this Arrhenius law changes by more than 30 orders of magnitude for small changes of the magnetic field, reflecting a substantial reduction of the lifetime of skyrmions by entropic effects and, thus, an extreme case of enthalpy-entropy compensation. Such compensation effects, being well known across many different scientific disciplines, affect topological transitions and, thus, topological protection on an unprecedented level

    Ancient mitogenomes from Pre-Pottery Neolithic Central Anatolia and the effects of a Late Neolithic bottleneck in sheep (Ovis aries)

    Get PDF
    Occupied between ~10,300 and 9300 years ago, the Pre-Pottery Neolithic site of Aşıklı Höyük in Central Anatolia went through early phases of sheep domestication. Analysis of 629 mitochondrial genomes from this and numerous sites in Anatolia, southwest Asia, Europe, and Africa produced a phylogenetic tree with excessive coalescences (nodes) around the Neolithic, a potential signature of a domestication bottleneck. This is consistent with archeological evidence of sheep management at Aşıklı Höyük which transitioned from residential stabling to open pasturing over a millennium of site occupation. However, unexpectedly, we detected high genetic diversity throughout Aşıklı Höyük’s occupation rather than a bottleneck. Instead, we detected a tenfold demographic bottleneck later in the Neolithic, which caused the fixation of mitochondrial haplogroup B in southwestern Anatolia. The mitochondrial genetic makeup that emerged was carried from the core region of early Neolithic sheep management into Europe and dominates the matrilineal diversity of both its ancient and the billion-strong modern sheep populations

    Ancient mitogenomes from Pre-Pottery Neolithic Central Anatolia and the effects of a Late Neolithic bottleneck in sheep (Ovis aries)

    Get PDF
    Occupied between ~10,300 and 9300 years ago, the Pre-Pottery Neolithic site of Aşıklı Höyük in Central Anatolia went through early phases of sheep domestication. Analysis of 629 mitochondrial genomes from this and numerous sites in Anatolia, southwest Asia, Europe, and Africa produced a phylogenetic tree with excessive coalescences (nodes) around the Neolithic, a potential signature of a domestication bottleneck. This is consistent with archeological evidence of sheep management at Aşıklı Höyük which transitioned from residential stabling to open pasturing over a millennium of site occupation. However, unexpectedly, we detected high genetic diversity throughout Aşıklı Höyük's occupation rather than a bottleneck. Instead, we detected a tenfold demographic bottleneck later in the Neolithic, which caused the fixation of mitochondrial haplogroup B in southwestern Anatolia. The mitochondrial genetic makeup that emerged was carried from the core region of early Neolithic sheep management into Europe and dominates the matrilineal diversity of both its ancient and the billion-strong modern sheep populations

    Reciprocal and real space imaging of static and dynamically excited magnetic skyrmions and chiral magnetic textures

    Get PDF
    A magnetic skyrmion is a special spin configuration with particle-like properties that can be found in non-collinear thin-films and bulk chiral magnets. This work shows measurements of these special structures using two techniques. In the first part Resonant Elastic X-ray Scattering (REXS) is used to obtain reciprocal space maps of the non-collinear phases (helical phase, conical phase and hexagonal skyrmion lattice phase) of the bulk chiral magnet Cu2OSeO3. This is then further extended with Ferromagnetic Resonance (FMR) measurements by means of a magnetic excitation of the system with an oscillating external magnetic field. It is found out that the scattered intensity changes when the system is resonantly driven out of equilibrium. This change can be detected which leads to the novel technique REXS-FMR. The method has benefits over conventional FMR measurements when applied to systems with complex magnetic environments or phase coexistence because the magnetic phase that produces the measured FMR signal can be selected. In the second part, real space imaging of magnetic skyrmions and other chiral magnetic textures is presented by means of Lorentz Transmission Electron Microscopy (LTEM). Theoretical results are presented that link the magnetic structure of a Neel or Bloch skyrmion with the obtained electron phase in LTEM. The experimental part shows Fresnel and Differential Phase Contrast (DPC) LTEM measurements of Cu2OSeO3 as well as of the room-temperature skyrmion hosting multilayer materials Pt/Co/Tb and Pt/Co/W. The measurements e.g. include magnetic phase diagrams, skyrmion-skyrmion interaction determination or a closer study of the properties of the skyrmion nucleation process

    The differential phase contrast uncertainty relation: Connection between electron dose and field resolution

    No full text
    Differential phase contrast (DPC) microscopy is a STEM imaging technique, which is used to measure magnetic and electric fields of mesoscopic and nanoscopic dimensions, i.e. interatomic distances (Chapman et al. 1978; Chapman et al. 1981; Chapman, 1984; Chapman et al. 1985; Chapman et al. 1997; Lohr et al. 2012; Shibata et al. 2015; Bauer et al. 2014; Carvalho et al. 2016; Lohr et al. 2016; Mueller-Caspary et al. 2019a,2019b; Mueller-Caspary et al. 2018; Mueller-Caspary et al. 2017; Mueller-Caspary et al. 2014; Winkler et al. 2020; Toyama et al. 2020). In this paper we will demonstrate that the electron dose per pixel deposited on the specimen is decisive to the precision and resolution of measurements of a field's local strength. Relations are given which connect a given electron dose per pixel to the fundamentally achievable precision to which the specimen's interaction with the electrons may be determined, taking into account quantum mechanical considerations. Vice versa, given a certain required precision, the required dose per pixel can be easily predicted for reliable measurements of a desired property. First, these relations are given for the case of a continuous, i.e. non-pixelated, detector followed by simulations which show that the same relations hold for pixelated detectors. Then, the achievable precision for detectors with different pixel counts in combination with different camera lengths is discussed and the maximum measurable field amplitude per set-up is determined. Finally, the effect of inhomogeneities within the diffraction disk is discussed and possible deviations from the derived relations are considered. We also demonstrate that Heisenberg's uncertainty relation determines the possible field resolution in differential phase contrast microscopy, and that the achievable local field resolution is a function of the applied electron dose per pixel

    Introducing a non-pixelated and fast centre of mass detector for differential phase contrast microscopy

    No full text
    With the advent of probe corrected STEM machines it became possible to probe specimens on a scale of less than 50 pm resolution. This opens completely new horizons for research, as it is e.g. possible to probe the electrostatic fields between individual rows of atoms, using differential phase contrast (DPC). However, in contrast to conventional DPC, where one deals with extended fields which can be assumed constant across the electron probe, this is not possible for sub-atomic probes in DPC. For the latter case it was shown [1,2], that the strongly inhomogeneous field distribution within the probe diameter, which usually is caused by the nuclear potentials of an atomic column, leads to a complicated intensity redistribution within the diffraction disk. The task is then to determine the intensity weighted centre of the diffraction disk pattern (frequently also called centre of mass, COM), which is proportional to the average lateral momentum gained by the average electron, transmitted through the probe diameter. In first reported measurements, the determination of this COM was achieved using a pixelated detector in combination with a software-based evaluation of the COM. This suffers from two disadvantages: first, the nowadays available pixelated detectors are still not very fast (approximately 1000 fps) and quite expensive, and second, the amount of data to be processed after acquisition is comparatively huge. In this paper we report on an alternative to a pixelated detector, which is able to directly deliver the COM of a diffraction disk's intensity distribution with frequencies up to 200 kHz. We present measurements on the sensitivity of this detector as well as first results from DPC imaging. From these results we expect the detector also to serve well in sub-atomic DPC field sensing, possibly replacing today's segmented or pixelated detectors. (C) 2018 Elsevier B.V. All rights reserved

    Olefin-Stabilized Cobalt Nanoparticles for C=C, C=O, and C=N Hydrogenations

    No full text
    The development of cobalt catalysts that combine easy accessibility and high selectivity constitutes a promising approach to the replacement of noble-metal catalysts in hydrogenation reactions. This report introduces a user-friendly protocol that avoids complex ligands, hazardous reductants, special reaction conditions, and the formation of highly unstable pre-catalysts. Reduction of CoBr2 with LiEt3BH in the presence of alkenes led to the formation of hydrogenation catalysts that effected clean conversions of alkenes, carbonyls, imines, and heteroarenes at mild conditions (3 mol% cat., 2-10 bar H-2, 20-80 degrees C). Poisoning studies and nanoparticle characterization by TEM, EDX, and DLS supported the notion of a heterotopic catalysis mechanism

    Stereoselective Alkyne Hydrogenation by using a Simple Iron Catalyst

    No full text
    The stereoselective hydrogenation of alkynes constitutes one of the key approaches for the construction of stereodefined alkenes. The majority of conventional methods utilize noble and toxic metal catalysts. This study concerns a simple catalyst comprised of the commercial chemicals iron(II) acetylacetonate and diisobutylaluminum hydride, which enables the Z-selective semihydrogenation of alkynes under near ambient conditions (1-3 bar H-2, 30 degrees C, 5 mol % [Fe]). Neither an elaborate catalyst preparation nor addition of ligands is required. Mechanistic studies (kinetic poisoning, X-ray absorption spectroscopy, TEM) strongly indicate the operation of small iron clusters and particle catalysts

    Stereoselective Chromium‐Catalyzed Semi‐Hydrogenation of Alkynes

    No full text
    Chromium complexes have found very little applications as hydrogenation catalysts. Here, we report a Cr-catalyzed semi-hydrogenation of internal alkynes to the correspondingZ-alkenes with good stereocontrol (up to 99/1 for dialkyl alkynes). The catalyst comprises the commercial reagents chromium(III) acetylacetonate, Cr(acac)(3), and diisobutylaluminium hydride, DIBAL-H, in THF. The semi-hydrogenation operates at mild conditions (1-5 bar H-2, 30 degrees C)
    corecore