6 research outputs found

    Targeting Cytokine Signaling and Lymphocyte Traffic via Small Molecules in Inflammatory Bowel Disease: JAK Inhibitors and S1PR Agonists

    Get PDF
    The inflammatory Bowel diseases (IBDs) are a chronic, relapsing inflammatory diseases of the gastrointestinal tract with heterogeneous behavior and prognosis. The introduction of biological therapies including anti-TNF, anti-IL-12/23, and anti-integrins, has revolutionized the treatment of IBD, but these drugs are not universally effective. Due to the complex molecular structures of biologics, they are uniformly immunogenic. New discoveries concerning the underlying mechanisms involved in the pathogenesis of IBD have allowed for progress in the development of new treatment options. The advantage of small molecules (SMs) over biological therapies includes their lack of immunogenicity, short half-life, oral administration, and low manufacturing cost. Among these, the Janus Kinases (JAKs) inhibition has emerged as a novel strategy to modulate downstream cytokine signaling during immune-mediated diseases. These drugs target various cytokine signaling pathways that participate in the pathogenesis of IBD. Tofacitinib, a JAK inhibitor targeting predominantly JAK1 and JAK3, has been approved for the treatment of ulcerative colitis (UC), and there are other specific JAK inhibitors under development that may be effective in Crohn’s. Similarly, the traffic of lymphocytes can now be targeted by another SM. Sphingosine-1-phosphate receptor (S1PR) agonism is a novel strategy that acts, in part, by interfering with lymphocyte recirculation, through blockade of lymphocyte egress from lymph nodes. S1PR agonists are being studied in IBD and other immune-mediated disorders. This review will focus on SM drugs approved and under development, including JAK inhibitors (tofacitinib, filgotinib, upadacitinib, peficitinib) and S1PR agonists (KRP-203, fingolimod, ozanimod, etrasimod, amiselimod), and their mechanism of action

    Modulation of the Acute Inflammatory Response Induced by the <i>Escherichia coli</i> Lipopolysaccharide through the Interaction of Pentoxifylline and Florfenicol in a Rabbit Model

    No full text
    Background: Experimental reports have demonstrated that florfenicol (FFC) exerts potent anti-inflammatory effects, improving survival in a murine endotoxemia model. Considering the anti-inflammatory and immunomodulatory properties of pentoxifylline (PTX) as an adjuvant to enhance the efficacy of antibiotics, the anti-inflammatory effects of the interaction FFC/PTX over the E. coli Lipopolysaccharide (LPS)-induced acute inflammatory response was evaluated in rabbits. Methods: Twenty-five clinically healthy New Zealand rabbits (3.8 ± 0.2 kg body weight: bw), were distributed into five experimental groups. Group 1 (control): treated with 1 mL/4 kg bw of 0.9% saline solution (SS) intravenously (IV). Group 2 (LPS): treated with an IV dose of 5 ”g/kg of LPS. Group 3 (pentoxifylline (PTX) + LPS): treated with an oral dose of 30 mg/kg PTX, followed by an IV dose of 5 ”g/kg of LPS 45 min after PTX. Group 4 (Florfenicol (FFC) + LPS): treated with an IM dose of 20 mg/kg of FFC, followed by an IV dose of 5 ”g/kg of LPS 45 min after FFC administration. Group 5 (PTX + FFC + LPS): treated with an oral dose of 30 mg/kg of PTX, followed by an IM dose of 20 mg/kg of FFC, and, 45 min after an IV dose of 5 ”g/kg of LPS was administered. The anti-inflammatory response was evaluated through changes in plasma levels of interleukins (TNF-α, IL-1ÎČ and IL-6), C-reactive protein (CRP), and body temperature. Results: It has been shown that each drug produced a partial inhibition over the LPS-induced increase in TNF-α, IL-1ÎČ, and CRP. When both drugs were co-administered, a synergistic inhibitory effect on the IL-1ÎČ and CRP plasma concentrations was observed, associated with a synergic antipyretic effect. However, the co-administration of PTX/FFC failed to modify the LPS-induced increase in the TNF-α plasma concentrations. Conclusions: We concluded that the combination of FFC and PTX in our LPS sepsis models demonstrates immunomodulatory effects. An apparent synergistic effect was observed for the IL-1ÎČ inhibition, which peaks at three hours and then decreases. At the same time, each drug alone was superior in reducing TNF-α levels, while the combination was inferior. However, the peak of TNF-α in this sepsis model was at 12 h. Therefore, in rabbits plasma IL-1ÎČ and TNF-α could be regulated independently, thus, further research is needed to explore the effects of this combination over a more prolonged period

    Incidence, Clinical Characteristics, and Management of Psoriasis Induced by Anti-TNF Therapy in Patients with Inflammatory Bowel Disease: A Nationwide Cohort Study.

    No full text
    Psoriasis induced by anti-tumor necrosis factor-α (TNF) therapy has been described as a paradoxical side effect. To determine the incidence, clinical characteristics, and management of psoriasis induced by anti-TNF therapy in a large nationwide cohort of inflammatory bowel disease patients. Patients with inflammatory bowel disease were identified from the Spanish prospectively maintained Estudio Nacional en Enfermedad Inflamatoria Intestinal sobre Determinantes genéticos y Ambientales registry of Grupo Español de Trabajo en Enfermedad de Croh y Colitis Ulcerosa. Patients who developed psoriasis by anti-TNF drugs were the cases, whereas patients treated with anti-TNFs without psoriasis were controls. Cox regression analysis was performed to identify predictive factors. Anti-TNF-induced psoriasis was reported in 125 of 7415 patients treated with anti-TNFs (1.7%; 95% CI, 1.4-2). The incidence rate of psoriasis is 0.5% (95% CI, 0.4-0.6) per patient-year. In the multivariate analysis, the female sex (HR 1.9; 95% CI, 1.3-2.9) and being a smoker/former smoker (HR 2.1; 95% CI, 1.4-3.3) were associated with an increased risk of psoriasis. The age at start of anti-TNF therapy, type of inflammatory bowel disease, Montreal Classification, and first anti-TNF drug used were not associated with the risk of psoriasis. Topical steroids were the most frequent treatment (70%), achieving clinical response in 78% of patients. Patients switching to another anti-TNF agent resulted in 60% presenting recurrence of psoriasis. In 45 patients (37%), the anti-TNF therapy had to be definitely withdrawn. The incidence rate of psoriasis induced by anti-TNF therapy is higher in women and in smokers/former smokers. In most patients, skin lesions were controlled with topical steroids. More than half of patients switching to another anti-TNF agent had recurrence of psoriasis. In most patients, the anti-TNF therapy could be maintained
    corecore