79 research outputs found
Desarrollo de andamios de matrices de biopolímeros estructuradas con aplicación en Ingeniería Tisular
La Ingeniería de Tejidos es un campo multidisciplinario donde interactúan diferentes ramas de la ciencia, como la química, la física, la medicina, la biología y la ingeniería. En los últimos años, el elemento más investigado de TE ha sido el andamio, que es una estructura que actúa como una plataforma de anclaje y adhesión para las células. De esta manera, estos andamios deben tener propiedades mecánicas y morfológicas bien diseñadas para promover el crecimiento óptimo de las células y su integración dentro del tejido. Las propiedades de los andamios dependen en gran medida del tipo de polímero utilizado y el método de procesamiento seguido para desarrollar estas estructuras. Por tanto, se debe hacer una caracterización previa de la materia prima para comprobar sus propiedades. Por tanto, el objetivo principal de este estudio ha consistido en el desarrollo de andamios con características adecuadas de porosidad, resistencia mecánica y biodegradabilidad, que sean viables para el desarrollo de tejidos musculares y biocompatibles, a partir de combinaciones de colágeno y gelatina con polímeros naturales (quitosano) o polímeros sintéticos. (PCL) La propuesta implica el uso de técnicas clásicas de procesamiento de polímeros, como el secado por liofilización, combinadas con técnicas novedosas destinadas a optimizar las propiedades de las matrices, como las técnicas de electrohilado o bioimpresión molecular. De los andamios, se han caracterizado tanto sus propiedades mecánicas como microestructurales. Además, se han seleccionado los más prometedores y se les ha realizado una evaluación biológica para comprobar su potencial para el desarrollo de tejido muscular
La enseñanza de biomateriales en el Grado de Ingeniería de los materiales
Se realizó un ciclo de mejora en la asignatura obligatoria Biomateriales
que se imparte en los siguientes grados: Doble Grado en Química
e Ingeniería de Materiales, Doble Grado en Física e Ingeniería de Materiales
y Grado en Ingeniería de Materiales. La metodología llevada a
cabo consiste en el análisis de un problema que se utiliza como punto
de partida para el desarrollo de las distintas actividades. Los resultados
reflejan un desarrollo en el aprendizaje de los alumnos, así como
una valoración bastante positiva de ellos sobre esta metodología innovadora
que se ha llevado a cabo, con una valoración media de 4.6
(sobre 5)
Tuning the Mechanical and Functional Properties of Pea Protein- Based Bioplastics via Different Physical and Chemical Cross-Linking Methods
Protein-based bioplastics have been highly investigated in order to substitute conventional plastics. This is due to
their biodegradability and natural origin, which reduce well-known plastic pollution. Nevertheless, their low mechanical properties
and high environmental sensitivity have slowed their advance to the market. One solution to this problem is the use of additional
cross-linking methods, which improve the bioplastics’ properties. In this sense, the main goal of this study was to evaluate the
influence of different cross-linking methods (physical, chemical, and enzymatic) on the mechanical and functional properties of pea
protein-based bioplastics. According to the results obtained in this work, an additional cross-linking stage could tune the properties
of protein-based bioplastics.This study was financially supported by MCIN/AEI/10.13039/501100011033/FEDER, UE, through Project
PID2021-124294OB-C21. The authors gratefully acknowledge the financial support. The authors also thank the postdoctoral contract of Víctor Manuel Pérez Puyana from the European Social Fund/Junta de Andalucía (“Contratación de Personal Investigador Doctor”, PAIDI DOCTOR_Convocatoria 2019−2020).Departamento de Ingeniería Química, Química Física y Ciencias de los Materiale
Physical crosslinking of pea protein-based bioplastics: Effect of heat and UV treatments
Climate change and the enhancement of ecology have generated the need to create packaging that is biodegradable and, at the same time, allows food to be preserved efficiently in order to avoid the accumulation of plastic and minimize food waste. In this sense, protein-based bioplastics are a promising alternative, but due to their limited properties they need additional crosslinking in order to compete with conventional plastics. Among them, physical crosslinking is of special interest in the food industry, as it does not generate toxicity problems. In this way, the overall objective of this work was to develop pea protein-based bioplastics by injection moulding, using two different physical crosslinking methods: heat treatment (50ºC-24 h, 120 ºC-4 h and 120 ºC-24 h) and ultraviolet (UV) treatment (50, 120 and 500 mJ/cm2). Thus, different bioplastics were compared based on their mechanical, functional and antimicrobial properties. The relevance of this study is based on the improvement of certain aspects of the mechanical and functional properties of bioplastics by the addition of an extra physical crosslinking stage to the fabrication process. In fact, UV treatment improves the antimicrobial activity of bioplastics, which gives it a significant improvement to compete with conventional plastics in the food sector.This work is part of a research project sponsored by “Ministerio de
Ciencia e Innovaci´on-Agencia Estatal de Investigaci´on” (MCI/AEI/
FEDER, EU) from the Spanish Government (Ref. RTI2018–097100-BC21).
The authors gratefully acknowledge their financial support. This
work is also possible thanks to the postdoctoral contract of Víctor M.
P´erez Puyana from the “Contrataci´on de Personal Investigador Doctor”
supported by the European Social Fund and Junta de Andalucía (PAIDI
DOCTOR – Convocatoria 2019–2020, DOC_00586) and for the predoctoral
grant of Mercedes Jim´enez Rosado from "Ministerio de Educaci´on y
Formaci´on Profesional" (FPU17/01718)
Influence of the Aliphatic Chain Length on the Crosslinking Properties of Aldehydes on Sustainable Bioplastics Obtained from Pea Protein
Conventional plastics can be substituted for protein-based bioplastics due to their natural origin and their biodegradability.
Nevertheless, their properties are inferior to those obtained for synthetic plastics. The chemical crosslinking of these bioplastics
with aldehydes could improve their properties to compete in the actual market. Thus, the main goal of this article
was to assess the influence of the incorporation of aldehydes with different aliphatic chain length on the physicochemical
(crosslinking degree, colour and transparency), mechanical (flexural and tensile behaviour) and functional (water uptake
capacity and biodegradability) properties of protein-based bioplastics. In this sense, pea protein, a by-product of food
industry, was used as raw material, processing it by injection moulding to obtain the bioplastics. Formaldehyde, glyoxal and
glutaraldehyde were the aldehydes used as crosslinking agents. The results show the rise of the mechanical properties with
the incorporation of the aldehydes, depending on the degree of crosslinking they generate. All this also causes a consequent
loss of the water uptake capacity and an increase in biodegradability time. In conclusion, this work opens a new alternative
to develop sustainable bioplastics that can be used in the market.Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature. Ministerio de Ciencia e Innovación-
Agencia Estatal de Investigación (MCI/AEI/FEDER, EU) from the
Spanish Government (Ref. PID2021-124294OB-C21). Junta de Andalucía
and European Social Fund (Ref. PAIDI DOCTOR – Convocatoria
2019/2020, DOC_00586). Ministerio de Educación y Formación
Profesional (Ref. FPU17/01718)
Pea Protein‑Based Bioplastics Crosslinked with Genipin: Analysis of the Crosslinking Evolution
Replacing conventional plastics with other products obtained from biobased and biodegradable raw materials is an increasingly studied solution. In this line, the development of protein-based bioplastics is a promising alternative. However, for
some applications, such as packaging it would be necessary to improve their properties by including an additional stage to
crosslink the protein chains during the production of bioplastics. Therefore, pea protein-based bioplastics crosslinked with
genipin, a natural non-toxic chemical crosslinking agent, are evaluated in this study. The bioplastics are obtained via injection moulding and genipin, is included in the initial formulation. Specifcally, the concentration of genipin and the efects
on the protein blends with genipin over days are evaluated. The evolution of the reaction is followed by the colour change
of the blend, together with thermal analyses and infrared spectroscopy. Results showed the evolution of the crosslinking in
the blends resulted in conformational changes that resulted in the modifcation of the initial yellowish colour to a blueish
system. Respect their bioplastics, more deformable systems with a lower water absorption capability are obtained by using
genipin as crosslinking agents This work is a part of a I+D+i PID2021-124294OBC21 project which is sponsored by MCIN/AEI/10.13039/501100011033/
and “ERDF A way of making Europe”. The authors thank their fnancial
support. In addition, the authors would also acknowledge for the postdoctoral contract of Víctor M. Pérez Puyana from the “Contratación de
Personal Investigador Doctor” supported by the European Social Fund
and Junta de Andalucía (PAIDI DOCTOR – Convocatoria 2019-2020).
Funding for open access publishing: Universidad de Sevilla/
CBUADepartamento de Ingeniería Química, Química Física y Ciencias de los Materiale
Fabrication and Characterization of Hydrogels Based on Gelatinised Collagen with Potential Application in Tissue Engineering
Regenerative medicine is increasingly focused on the development of biomaterials that facilitate cell adhesion and proliferation through the use of natural polymers, which have better biocompatibility and biodegradability. In this way, the use of hydrogels has been considered as a potential option for tissue engineering due to their physical and chemical characteristics. However, few studies associate the raw materials properties and processing conditions with the final characteristics of hydrogels, which could condition their use as scaffolds for tissue engineering. In this context, the main objective of this work was the evaluation of type I collagen as raw material for the elaboration of hydrogels. In addition, gelation time, pH and temperature were evaluated as the most influential variables in the hydrogel processing method by rheological (time, strain and frequency sweep tests) and microstructural (Cryo-SEM) measurements. The results indicate that it is possible to obtain collagen hydrogels with adequate rheological and microstructural characteristics by selecting optimal processing conditions. However, further studies are necessary to assess their suitability for cell accommodation and growth.Ministerio de Economía y Competitividad RTI2018-097100-B-C2
Polymer-based scaffolds for soft-tissue engineering
Biomaterials have been used since ancient times. However, it was not until the late 1960s when their development prospered, increasing the research on them. In recent years, the study of biomaterials has focused mainly on tissue regeneration, requiring a biomaterial that can support cells during their growth and fulfill the function of the replaced tissue until its regeneration. These materials, called scaffolds, have been developed with a wide variety of materials and processes, with the polymer ones being the most advanced. For this reason, the need arises for a review that compiles the techniques most used in the development of polymer-based scaffolds. This review has focused on three of the most used techniques: freeze-drying, electrospinning and 3D printing, focusing on current and future trends. In addition, the advantages and disadvantages of each of them have been compared.Ministerio de Economía y Competitividad RTI2018-097100-B-C2
Micronutrient-controlled-release protein-based systems for horticulture: Micro vs. nanoparticles
Fertilization is an increasingly common practice in horticulture. Nevertheless, the conventionally used fertilization method is ineffective, and it generates contamination problems due to excess nutrients. Therefore, new technologies, such as nanofertilization or controlled-release systems of fertilizers, are currently being tested. Thus, the main objective of this work was to develop controlled-release systems for micronutrients, using soy protein as raw material. Different micronutrients (zinc, copper, iron, and manganese) were evaluated, as well as their incorporation in the form of micro and nanoparticles. The mechanical and functional properties (water uptake capacity, biodegradability, and micronutrient release) of the systems, as well as their use in crops, were studied to assess their viability. The results showed the great potential of these systems to incorporate micronutrients into crops, especially when combined with nanotechnology, improving the benefits of conventional fertilization.
Download : Download high-res image (146KB)
Download : Download full-size imageMEFP from Spanish Government for the predoctoral grant of Mercedes Jiménez Rosado FPU2017/01718Junta de Andalucía and Universidad de Sevilla for the postdoctoral grant of Victor Perez-Puyana (Talento Doctores, Junta de Andalucía con Fondo Social Europeo, Convocatoria 2019–20 DOC_0058
Desarrollo de geles bioactivos basados en residuos de la industria del arroz
La industria arrocera produce aproximadamente unos 100 millones de toneladas de residuos cada año. Aunque estos residuos tengan un alto contenido proteico, habitualmente se incineran debido a su alto poder calorífico. Sin embargo, existe una continua y creciente demanda de fuentes de proteína con el fin de poder satisfacer las necesidades de alimentación de la creciente población mundial. Una alternativa interesante sería el uso de concentrados proteicos provenientes de estos residuos para desarrollar productos alimentarios. En este sentido, se ha comprobado que la obtención de hidrolizados proteicos a partir de los concentrados proteicos puede ser una vía altamente interesante, aumentando la funcionalidad de estos sistemas. Por otra parte, en el caso de los productos alimentarios, las propiedades mecánicas no son las únicas que importan. De especial relevancia son las propiedades antioxidantes de estos productos. La evaluación de la capacidad antioxidante de estos sistemas puede llevarse a cabo mediante el empleo de diferentes técnicas. La presente contribución hace uso de un concentrado proteico de arroz (RPC) y dos hidrolizados (RPHA and RPHB) para el desarrollo de geles alimentarios. La caracterización llevada a cabo comprende tanto a la estructura de los sistemas, como a las de las propiedades antioxidantes de los mismos.Rice industry produces around 100 million tons of wastes every year. Although, these wastes generally exhibits a high protein content, they are burned due to its high calorific value. However, scientific community claims continuously for new protein sources in order to satisfy worldwide food requirements. In this sense, one alternative could be the use of protein concentrates from protein surpluses and wastes to develop new food products. Additionally, the use of protein hydrolysates could be very relevant since the functionality of protein may increase. Otherwise, not only the functionality of proteins is relevant in food products, but also the bioactive properties of them is a key factor. Among these bioactive properties, the evaluation of antioxidant properties of food products could involve the increase in value of these by-products. This work deals with the evaluation of a protein concentrate (RPC) and two different protein hydrolysates (RPHA and RPHB) in order to develop food-grade gels. The characterisation carried out include mechanical properties and antioxidant activity of the final gels.Plan Propio de la Universidad de Sevilla Proyecto: 2017/0000096
- …