59 research outputs found

    Small Corrections to the Tunneling Phase Time Formulation

    Full text link
    After reexamining the above barrier diffusion problem where we notice that the wave packet collision implies the existence of {\em multiple} reflected and transmitted wave packets, we analyze the way of obtaining phase times for tunneling/reflecting particles in a particular colliding configuration where the idea of multiple peak decomposition is recovered. To partially overcome the analytical incongruities which frequently rise up when the stationary phase method is adopted for computing the (tunneling) phase time expressions, we present a theoretical exercise involving a symmetrical collision between two identical wave packets and a unidimensional squared potential barrier where the scattered wave packets can be recomposed by summing the amplitudes of simultaneously reflected and transmitted wave components so that the conditions for applying the stationary phase principle are totally recovered. Lessons concerning the use of the stationary phase method are drawn.Comment: 14 pages, 3 figure

    ATR-FTIR spectroscopy in blood plasma combined with multivariate analysis to detect HIV infection in pregnant women

    Get PDF
    Abstract: The primary concern for HIV-infected pregnant women is the vertical transmission that can occur during pregnancy, in the intrauterine period, during labour or even breastfeeding. The risk of vertical transmission can be reduced by early diagnosis. Therefore, it is necessary to develop new methods to detect this virus in a quick and low-cost fashion, as colorimetric assays for HIV detection tend to be laborious and costly. Herein, attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy combined with multivariate analysis was employed to distinguish HIV-infected patients from healthy uninfected controls in a total of 120 blood plasma samples. The best sensitivity (83%) and specificity (92%) values were obtained using the genetic algorithm with linear discriminant analysis (GA-LDA). These good classification results in addition to the potential for high analytical frequency, the low cost and reagent-free nature of this method demonstrate its potential as an alternative tool for HIV screening during pregnancy
    corecore