4 research outputs found

    A Vanadium(III) Complex with Blue and NIR-II Spin-Flip Luminescence in Solution

    Get PDF
    Luminescence from Earth-abundant metal ions in solution at room temperature is a very challenging objective due to the intrinsically weak ligand field splitting of first-row transition metal ions, which leads to efficient nonradiative deactivation via metal-centered states. Only a handful of 3dn metal complexes (n ≠ 10) show sizable luminescence at room temperature. Luminescence in the near-infrared spectral region is even more difficult to achieve as further nonradiative pathways come into play. No Earth-abundant first-row transition metal complexes have displayed emission >1000 nm at room temperature in solution up to now. Here, we report the vanadium(III) complex mer-[V(ddpd)2][PF6]3 yielding phosphorescence around 1100 nm in valeronitrile glass at 77 K as well as at room temperature in acetonitrile with 1.8 × 10–4% quantum yield (ddpd = N,N′-dimethyl-N,N′-dipyridine-2-ylpyridine-2,6-diamine). In addition, mer-[V(ddpd)2][PF6]3 shows very strong blue fluorescence with 2% quantum yield in acetonitrile at room temperature. Our comprehensive study demonstrates that vanadium(III) complexes with d2 electron configuration constitute a new class of blue and NIR-II luminophores, which complement the classical established complexes of expensive precious metals and rare-earth elements

    In the footsteps of August Michaelis: Syntheses and Thermodynamics of Extremely Low-Volatile Ionic Liquids

    No full text
    © 2020 The Authors. Published by Wiley-VCH GmbH A series of nine different known ionic liquids or low melting salts was synthesised and purified. They are composed of the [NTf2]– (bis(trifluoromethane)sulfonimide), [OTf]– (trifluoro-methane-sulfonate), or [B(CN)4]– (tetracyanidoborate) anion and [Ph4P]+ (tetraphenylphosphonium), [Ph3BzP]+ (triphenylbenzyl phosphonium), [nBu4P]+ (tetra-nbutylphosphonium), [nBuPh3P]+ (tri-phenyl-nbutylphosphonium), [nBu4N]+ (tetra-nbutylammonium), or the [PPN]+ (bis(triphenylphosphine)iminium) cation. Precise vapour pressure data and enthalpies of vaporisation were measured using the Quartz Crystal Microbalance (QCM) method and evaluated. Structure-property relations are established using the obtained data as well as literature known data of ILs with alkyl-substituted imidazolium cations. It turns out that ILs with the tetracyanidoborate anion have even higher values of the enthalpy of vaporisation than those with the common [NTf2]− or [OTf]− anion and therefore are even less volatile

    Ground- And Excited-State Properties of Iron(II) Complexes Linked to Organic Chromophores

    No full text
    © Two new bichromophoric complexes, [Fe(bim-ant)2]2+ and [Fe(bim-pyr)2]2+ ([H2-bim]2+ = 1,1′-(pyridine-2,6-diyl)bis(3-methyl-1H-imidazol-3-ium); ant = 9-anthracenyl; pyr = 1-pyrenyl), are investigated to explore the possibility of tuning the excited-state behavior in photoactive iron(II) complexes to design substitutes for noble-metal compounds. The ground-state properties of both complexes are characterized thoroughly by electrochemical methods and optical absorption spectroscopy, complemented by time-dependent density functional theory calculations. The excited states are investigated by static and time-resolved luminescence and femtosecond transient absorption spectroscopy. Both complexes exhibit room temperature luminescence, which originates from singlet states dominated by the chromophore (1Chrom). In the cationic pro-ligands and in the iron(II) complexes, the emission is shifted to red by up to 110 nm (5780 cm-1). This offers the possibility of tuning the organic chromophore emission by metal-ion coordination. The fluorescence lifetimes of the complexes are in the nanosecond range, while triplet metal-to-ligand charge-transfer (3MLCT) lifetimes are around 14 ps. An antenna effect as in ruthenium(II) polypyridine complexes connected to an organic chromophore is found in the form of an internal conversion within 3.4 ns from the 1Chrom to the 1MLCT states. Because no singlet oxygen forms from triplet oxygen in the presence of the iron(II) complexes and light, efficient intersystem crossing to the triplet state of the organic chromophore (3Chrom) is not promoted in the iron(II) complexes
    corecore