20 research outputs found

    Mesotheliomas show higher hyaluronan positivity around tumor cells than metastatic pulmonary adenocarcinomas

    No full text
    Hyaluronan is a unique glycosaminoglycan of the extracellular matrix, abundant in normal connective tissues but highly increased in many pathological conditions like cancer. Mesothelioma, one of the most malignant cancer types, is associated with high content of hyaluronan, with elevated levels of hyaluronan in pleural effusions and serum of the patients. Metastatic lung adenocarcinomas are typically less aggressive and have a better prognosis as compared to mesotheliomas, a reason why it is highly important to find reliable tools to differentiate these cancer types. The main purpose of this study was to evaluate the amount of hyaluronan, hyaluronan producing synthases (HAS’s) and hyaluronan receptor CD44, in mesothelioma and metastatic lung adenocarcinomas. Furthermore, we wanted to clarify the role of hyaluronan, CD44 and HAS’s as putative markers for differentiating malignant mesothelioma from metastatic lung adenocarcinomas. The main finding of this study was that mesotheliomas are significantly more positive for hyaluronan staining than metastatic adenocarcinomas. Unexceptionally, a trend of CD44 positivity of stromal cells was higher in adenocarcinomas as compared to mesotheliomas. However, no statistically significant differences were found between the staining of any of the HAS isoenzymes either in tumor cells or stromal cells of different groups of cases. The results show that there are significant differences in hyaluronan content between metastatic lung adenocarcinomas and mesotheliomas. However, as previous studies have suggested, hyaluronan alone is not a sufficient independent marker for diagnostic differentiation of these cancer types, but could be utilized as a combination together with other specific markers

    GASC1 expression in lung carcinoma is associated with smoking and prognosis of squamous cell carcinoma

    No full text
    GASC1 (gene amplified in squamous cell carcinoma 1) encodes a nuclear protein that epigenetically catalyses the lysine demethylation of histones. We investigated the expression of GASC1 in different histological subtypes of lung cancer (n=289). Percentage value of GASC1 immunohistochemical expression was evaluated separately in the nuclei and cytoplasms of epithelial cancer cells. The results were compared with clinicopathologic factors and the smoking history of the patients. In lung tumor cells, 38% of nuclei and 54% of the cytoplasms stained positive for GASC1. Adenocarcinomas expressed more GASC1 nuclear (p=0.00011) and cytoplasmic (p=0.00074) positivity than squamous cell carcinoma. Smokers displayed less nuclear and cytoplasmic GASC1 expression than non-smokers (p=0.028 and p=0.036, respectively). Similarly, patients with more cytoplasmic positive staining had fewer pack years (p=0.043). Nuclear GASC1 expression had an impairing effect on survival when all histological lung cancer types were analysed together (p=0.039) and separately in squamous cell lung carcinoma (p=0.016). The results reveal that GASC1 expression is higher in adenocarcinoma than squamous cell carcinoma. Smoking decreases GASC1 expression in tumor cells, indicating that tobacco smoke may influence the methylation of histone 3 lysine residues in lung cancer. Nonetheless, nuclear GASC1 predicts a poor prognosis, especially in squamous cell carcinoma

    Snail promotes an invasive phenotype in lung carcinoma

    No full text
    Abstract Background Snail is a transcriptional factor which is known to influence the epitheliomesenchymal transition (EMT) by regulating adhesion proteins such as E-cadherin and claudins as well as matrix metalloproteases (MMP). Methods To evaluate the functional importance of snail, a transciptional factor involved in EMT in lung tumors, we investigated its expression in a large set of lung carcinomas by immunohistochemistry. Expression of snail and effects of snail knockdown was studied in cell lines. Results Nuclear snail expression was seen in 21% of cases this being strongest in small cell lung carcinomas (SCLC). There was significantly greater snail expression in SCLC compared to squamous cell or adenocarcinoma. Positive snail expression was associated with poor survival in the whole material and separately in squamous cell and adenocarcinomas. In Cox regression analysis, snail expression showed an independent prognostic value in all of these groups. In several cell lines knockdown of snail reduced invasion in both matrigel assay and in the myoma tissue model for invasion. The influence of snail knockdown on claudin expression was cell type specific. Snail knockdown in these cell lines modified the expression of MMP2 and MMP9 but did not influence the activation of these MMPs to any significant degree. Conclusions The results show that snail plays an important role in the invasive characteristics of lung carcinoma influencing the survival of the patients. Snail knockdown might thus be one option for targeted molecular therapy in lung cancer. Snail knockdown influenced the expression of claudins individually in a cell-line dependent manner but did not influence MMP expressions or activations to any significant degree.</p
    corecore