5 research outputs found

    An ultralow-loss and lightweight cellulose-coated silica foam for planar Fresnel zone plate lens applications in future 6G devices

    No full text
    Abstract Several passive components of fifth-generation (5G) and future sixth-generation (6G) telecommunication devices require substrate materials of very low dielectric permittivity and losses to avoid wave absorption, reflection, and interference. Apart from their dielectric properties, these materials shall be also affordable and sufficiently robust to enable postprocessing and integration of functional electrical components. Herein, we demonstrate a Fresnel zone plate lens for operation at 300 GHz, whose structure is supported on substrate made of an ultraporous silica foam with a nanocellulose thin film coating. The effective dielectric permittivity and loss of the substrate ( ϵ r = 1.018 ± 0.003 and tan δ < 3 × 10 −4 at 300 GHz) is close to that of air. Experiments show that the fabricated Fresnel zone plate lens connected to a waveguide with total gain of 20 dB and angular beamwidth of 2.9° in good agreement with microwave simulations. The proposed lens structure has additional advantages such as small volume, ultralight weight, and simulations indicate 60 GHz bandwidth making it particularly appealing for radio front-ends of future 6G devices

    Bio-based smart materials for food packaging and sensors:a review

    No full text
    Abstract Food industry must guarantee food safety and seek sustainable solutions for increasing shelf life and decreasing food waste. Bio-based smart packaging is a potential option, where sustainability and real-time monitoring of food quality are combined assuring health safety and providing economic and environmental benefits. In this context, bio-based refers not only to packaging materials that are from renewable sources and biodegradable, but also to the sensor elements. The scope of this review is to explore the state-of-the-art of bio-based polymers used as food contact materials and to highlight the potential of natural compounds for sensing chemical and physical changes of the environment to monitor the food quality. Finally, different sustainability aspects of the bio-based materials are discussed

    Ultra-low permittivity porous silica-cellulose nanocomposite substrates for 6G telecommunication

    No full text
    Abstract The continuously increasing demand for faster data traffic of our telecommunication devices requires new and better materials and devices that operate at higher frequencies than today. In this work, a porous composite of silica nanoshells and cellulose nanofibers is demonstrated as a suitable candidate of dielectric substrates to be used in future 6G frequency bands. The hollow nanospheres of amorphous SiO2 with outstanding electromagnetic properties were obtained by a template-assisted Stöber process, in which a thin shell of silica is grown on polystyrene nanospheres first, and then the polymer core is burned off in a subsequent step. To be able to produce substrates with sufficient mechanical integrity, the nanoshells of SiO2 were reinforced with cellulose nanofibers resulting in a porous composite of very low mass density (0.19 ± 0.02 g cm−3), which is easy to press and mold to form films or slabs. The low relative dielectric permittivity (εr = 1.19 ± 0.01 at 300 GHz and εr = 1.17 ± 0.01 at 2.0 THz) and corresponding loss tangent (tan δ= 0.011 ± 0.001 at 300 GHz and tan δ = 0.011 ± 0.001 at 2.0 THz) of the composite films are exploited in substrates for radio frequency filter structures designed for 300 GHz operation

    Lightweight porous silica foams with extreme-low dielectric permittivity and loss for future 6G wireless communication technologies

    No full text
    Abstract In the next generation wireless communication systems operating at near terahertz frequencies, dielectric substrates with the lowest possible permittivity and loss factor are becoming essential. In this work, highly porous (98.9% ± 0.1%) and lightweight silica foams (0.025 ± 0.005 g/cm³), that have extremely low relative permittivity (εr = 1.018 ± 0.003 at 300 GHz) and corresponding loss factor (tan δ< 3 × 10⁻⁴ at 300 GHz) are synthetized by a template-assisted sol-gel method. After dip-coating the slabs of foams with a thin film of cellulose nanofibers, sufficiently smooth surfaces are obtained, on which it is convenient to deposit electrically conductive planar thin films of metals important for applications in electronics and telecommunication devices. Here, micropatterns of Ag thin films are sputtered on the substrates through a shadow mask to demonstrate double split-ring resonator metamaterial structures as radio frequency filters operating in the sub-THz band

    Bioplastics and carbon-based sustainable materials, components, and devices:toward green electronics

    No full text
    Abstract The continuously growing number of short-life electronics equipment inherently results in a massive amount of problematic waste, which poses risks of environmental pollution, endangers human health, and causes socioeconomic problems. Hence, to mitigate these negative impacts, it is our common interest to substitute conventional materials (polymers and metals) used in electronics devices with their environmentally benign renewable counterparts, wherever possible, while considering the aspects of functionality, manufacturability, and cost. To support such an effort, in this study, we explore the use of biodegradable bioplastics, such as polylactic acid (PLA), its blends with polyhydroxybutyrate (PHB) and composites with pyrolyzed lignin (PL), and multiwalled carbon nanotubes (MWCNTs), in conjunction with processes typical in the fabrication of electronics components, including plasma treatment, dip coating, inkjet and screen printing, as well as hot mixing, extrusion, and molding. We show that after a short argon plasma treatment of the surface of hot-blown PLA-PHB blend films, percolating networks of single-walled carbon nanotubes (SWCNTs) having sheet resistance well below 1 kΩ/□ can be deposited by dip coating to make electrode plates of capacitive touch sensors. We also demonstrate that the bioplastic films, as flexible dielectric substrates, are suitable for depositing conductive micropatterns of SWCNTs and Ag (1 kΩ/□ and 1 Ω/□, respectively) by means of inkjet and screen printing, with potential in printed circuit board applications. In addition, we exemplify compounded and molded composites of PLA with PL and MWCNTs as excellent candidates for electromagnetic interference shielding materials in the K-band radio frequencies (18.0—26.5 GHz) with shielding effectiveness of up to 40 and 46 dB, respectively
    corecore