2 research outputs found

    DNA Bar-coding: A Novel Approach for Identifying an Individual Using Extended Levenshtein Distance Algorithm and STR analysis

    Get PDF
    DNA bar-coding is a technique that uses the short DNA nucleotide sequences from the standard genome of the species in order to find and group the species to which it belongs to. The species are identified by their DNA nucleotide sequences in the same way the items are recognized and billed in the supermarket using barcode scanner to scan the Universal Product Code of the items. Two items may look same to the untrained eye, but in both cases the barcodes are distinct. It was possible to create DNA-barcodes to characterize species by analysing DNA samples from fish, birds, mammals, plants, and invertebrates using Smith-waterman and Needleman-Wunsch algorithm. In this work we are creating human DNA barcode and implementing Extended Levenshtein distance algorithm along with STR analysis that uses less computation time compared to the previously used algorithms to measure the differential distance between the two DNA nucleotide sequences through which an individual can be identified

    Sirtuin 6 inhibition protects against glucocorticoid-induced skeletal muscle atrophy by regulating IGF/PI3K/AKT signaling

    Get PDF
    Chronic activation of stress hormones such as glucocorticoids leads to skeletal muscle wasting in mammals. However, the molecular events that mediate glucocorticoid-induced muscle wasting are not well understood. Here, we show that SIRT6, a chromatin-associated deacetylase indirectly regulates glucocorticoid-induced muscle wasting by modulating IGF/PI3K/AKT signaling. Our results show that SIRT6 levels are increased during glucocorticoid-induced reduction of myotube size and during skeletal muscle atrophy in mice. Notably, overexpression of SIRT6 spontaneously decreases the size of primary myotubes in a cell-autonomous manner. On the other hand, SIRT6 depletion increases the diameter of myotubes and protects them against glucocorticoid-induced reduction in myotube size, which is associated with enhanced protein synthesis and repression of atrogenes. In line with this, we find that muscle-specific SIRT6 deficient mice are resistant to glucocorticoid-induced muscle wasting. Mechanistically, we find that SIRT6 deficiency hyperactivates IGF/PI3K/AKT signaling through c-Jun transcription factor-mediated increase in IGF2 expression. The increased activation, in turn, leads to nuclear exclusion and transcriptional repression of the FoxO transcription factor, a key activator of muscle atrophy. Further, we find that pharmacological inhibition of SIRT6 protects against glucocorticoid-induced muscle wasting in mice by regulating IGF/PI3K/AKT signaling implicating the role of SIRT6 in glucocorticoid-induced muscle atrophy.Fil: Mishra, Sneha. No especifíca;Fil: Cosentino, Claudia. Harvard Medical School; Estados UnidosFil: Tamta, Ankit Kumar. No especifíca;Fil: Khan, Danish. No especifíca;Fil: Srinivasan, Shalini. No especifíca;Fil: Ravi, Venkatraman. No especifíca;Fil: Abbotto, Elena. Università degli Studi di Genova; ItaliaFil: Arathi, Bangalore Prabhashankar. No especifíca;Fil: Kumar, Shweta. No especifíca;Fil: Jain, Aditi. No especifíca;Fil: Ramaian, Anand S.. No especifíca;Fil: Kizkekra, Shruti M.. No especifíca;Fil: Rajagopal, Raksha. No especifíca;Fil: Rao, Swathi. No especifíca;Fil: Krishna, Swati. No especifíca;Fil: Asirvatham Jeyaraj, Ninitha. Indian Institute of Technology; IndiaFil: Haggerty, Elizabeth R.. Harvard Medical School; Estados UnidosFil: Silberman, Dafne Magalí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Kurland, Irwin J.. No especifíca;Fil: Veeranna, Ravindra P.. No especifíca;Fil: Jayavelu, Tamilselvan. No especifíca;Fil: Bruzzone, Santina. Università degli Studi di Genova; ItaliaFil: Mostoslavsky, Raul. Harvard Medical School; Estados UnidosFil: Sundaresan, Nagalingam R.. No especifíca
    corecore