4 research outputs found

    Vav1 and PI3k Are Required for Phagocytosis of β-Glucan and Subsequent Superoxide Generation by Microglia

    No full text
    Microglia are the resident innate immune cells that are critical for innate and adaptive immune responses within the CNS. They recognize and are activated by pathogen-associated molecular patterns (PAMPs) present on the surface of pathogens. β-glucans, the major PAMP present within fungal cell walls, are recognized by Dectin-1, which mediates numerous intracellular events invoked by β-glucans in various immune cells. Previously, we showed that Dectin-1 mediates phagocytosis of β-glucan and subsequent superoxide production in microglia. Here, we report that the guanine nucleotide exchange factor Vav1 as well as phosphoinositide-3 kinase (PI3K) are downstream mediators of what is now recognized as the Dectin-1 signaling pathway. Both Vav1 and PI3K are activated upon stimulation of microglia with β-glucans, and the two proteins are required for phagocytosis of the glucan particles and for subsequent superoxide production. We also show that Vav1 functions upstream of PI3K and is required for activation of PI3K. Together, our results provide an important insight into the mechanistic aspects of microglial activation in response to β-glucans

    Lipopolysaccharides Directly Decrease Ca\u3csup\u3e2+\u3c/sup\u3e Oscillations and the Hyperpolarization-Activated Nonselective Cation Current I\u3csub\u3eF\u3c/sub\u3e in Immortalized HL-1 Cardiomyocytes

    No full text
    Lipopolysaccharide (LPS) has been implicated in sepsis-mediated heart failure and chronic cardiac myopathies. We determined that LPS directly and reversibly affects cardiac myocyte function by altering regulation of intracellular Ca2+ concentration ([Ca2+]i) in immortalized cardiomyocytes, HL-1 cells. [Ca2+]i oscillated (\u3c0.4 Hz), displaying slow and transient components. LPS (1 μg/ml), derived either from Escherichia coli or from Salmonella enteritidis, reversibly abolished Ca2+ oscillations and decreased basal [Ca 2+]i by 30-40 nM. HL-1 cells expressed Toll-like receptors, i.e., TLR-2 and TLR-4. Thus, we differentiated effects of LPS on [Ca2+]i and Ca2+ oscillations by addition of utlrapure LPS, a TLR-4 ligand. Ultrapure LPS had no effect on basal [Ca 2+]i, but it reduced the rate of Ca2+ oscillations. Interestingly, Pam3CSK4, a TLR-2 ligand, affected neither Ca 2+ parameter, and the effect of ultrapure LPS and Pam3CSK4 combined was similar to that of utlrapure LPS alone. Thus, unpurified LPS directly inhibits HL-1 calcium metabolism via TLR-4 and non-TLR-4-dependent mechanisms. Since others have shown that endotoxin impairs the hyperpolarization-activated, nonselective cationic pacemaker current (If), which is expressed in HL-1 cells, we utilized whole cell voltage-clamp techniques to demonstrate that LPS (1 μg/ml) reduced If in HL-1 cells. This inhibition was marginal at physiologic membrane potentials and significant at very negative potentials (P \u3c 0.05 at -140, -150, and -160 mV). So, we also evaluated effects of LPS on tail currents of fully activated If. LPS reduced the slope conductance of the tail currents from 498 ± 140 pS/pF to 223 ± 65 pS/pF (P \u3c 0.05) without affecting reversal potential of -11 mV. Ultrapure LPS had similar effect on If, whereas Pam3CSK4 had no effect on If. We conclude that LPS inhibits activation of I f, enhances its deactivation, and impairs regulation of [Ca 2+]i in HL-1 cardiomyocytes via TLR-4 and other mechanisms
    corecore