53 research outputs found

    Vehicular traffic flow at an intersection with the possibility of turning

    Full text link
    We have developed a Nagel-Schreckenberg cellular automata model for describing of vehicular traffic flow at a single intersection. A set of traffic lights operating in fixed-time scheme controls the traffic flow. Open boundary condition is applied to the streets each of which conduct a uni-directional flow. Streets are single-lane and cars can turn upon reaching to the intersection with prescribed probabilities. Extensive Monte Carlo simulations are carried out to find the model flow characteristics. In particular, we investigate the flows dependence on the signalisation parameters, turning probabilities and input rates. It is shown that for each set of parameters, there exist a plateau region inside which the total outflow from the intersection remains almost constant. We also compute total waiting time of vehicles per cycle behind red lights for various control parameters.Comment: 8 pages, 17 eps figures, Late

    What is urban nature and how do we perceive it?

    Get PDF
    This chapter discusses the complexities and apparent contradictions in defining ‘nature’ and ‘urban nature’ in the context of human-nature interactions. It explains why urban nature is so important to human health and well-being at this point in the twenty first century, focusing particularly on why considering nature perception is crucial if we are to plan, design and manage urban nature to prioritise people’s aesthetic appreciation, health and well-being. Nature-perceptions are then framed in relation to diversity in nature: the role of varying biodiversity, perceived biodiversity and different aesthetics of nature (specifically flowering and colour , structure and care). The significance of varying socio-cultural and geographical contextual factors in nature perception is then highlighted. The chapter closes by addressing implications for policy and practice and future research directions in relation to urban nature perception . The author draws extensively from her own and related research

    Radiations and male fertility

    Get PDF
    During recent years, an increasing percentage of male infertility has to be attributed to an array of environmental, health and lifestyle factors. Male infertility is likely to be affected by the intense exposure to heat and extreme exposure to pesticides, radiations, radioactivity and other hazardous substances. We are surrounded by several types of ionizing and non-ionizing radiations and both have recognized causative effects on spermatogenesis. Since it is impossible to cover all types of radiation sources and their biological effects under a single title, this review is focusing on radiation deriving from cell phones, laptops, Wi-Fi and microwave ovens, as these are the most common sources of non-ionizing radiations, which may contribute to the cause of infertility by exploring the effect of exposure to radiofrequency radiations on the male fertility pattern. From currently available studies it is clear that radiofrequency electromagnetic fields (RF-EMF) have deleterious effects on sperm parameters (like sperm count, morphology, motility), affects the role of kinases in cellular metabolism and the endocrine system, and produces genotoxicity, genomic instability and oxidative stress. This is followed with protective measures for these radiations and future recommendations. The study concludes that the RF-EMF may induce oxidative stress with an increased level of reactive oxygen species, which may lead to infertility. This has been concluded based on available evidences from in vitro and in vivo studies suggesting that RF-EMF exposure negatively affects sperm quality

    Investigation of Terrain Adaptive Control Foe a Walking Machine Motion

    No full text

    Balanced parallel sort on hypercube multiprocessors

    No full text

    Iterative algorithms for solution of large sparse systems of linear equations on hypercubes

    No full text
    • …
    corecore