47 research outputs found

    In-house experiments in large space structures at the Air Force Wright Aeronautical Laboratories Flight Dynamics Laboratory

    Get PDF
    The Flight Dynamics Laboratory is committed to an in-house, experimental investigation of several technical areas critical to the dynamic performance of future Air Force large space structures. The advanced beam experiment was successfully completed and provided much experience in the implementation of active control approaches on real hardware. A series of experiments is under way in evaluating ground test methods on the 12 meter trusses with significant passive damping. Ground simulated zero-g response data from the undamped truss will be compared directly with true zero-g flight test data. The performance of several leading active control approaches will be measured and compared on one of the trusses in the presence of significant passive damping. In the future, the PACOSS dynamic test article will be set up as a test bed for the evaluation of system identification and control techniques on a complex, representative structure with high modal density and significant passive damping

    Control design approaches for LaRC experiments

    Get PDF
    Control design approaches for SCOLE experimentation at Langley Research Center are considered; the following future topics are discussed: (1) Effects of Actuator Dynamics; (2) Refinement of STAC; (3) System Identification; and (4) Experimentation

    Space Station Freedom Beta Gimbal Control via Sensitivity Models

    Get PDF
    Tracking control of the Space Station Freedom solar array beta gimbals is investigated. Of particular interest is the issue of control in the presence of uncertainty in gimbal friction parameters. Sensitivity functions are incorporated into the feedback loop to desensitize the gimbal control law to parameter variations. Simulation results indicated that one such sensitivity function improves the closed-loop performance of the gimbals in the presence of unexpected friction parameter dispersions

    Model predictive trajectory optimization and tracking for on-road autonomous vehicles

    Get PDF
    Motion planning for autonomous vehicles requires spatio-temporal motion plans (i.e. state trajectories) to account for dynamic obstacles. This requires a trajectory tracking control process which faithfully tracks planned trajectories. In this paper, a control scheme is presented which first optimizes a planned trajectory and then tracks the optimized trajectory using a feedback-feedforward controller. The feedforward element is calculated in a model predictive manner with a cost function focusing on driving performance. Stability of the error dynamic is then guaranteed by the design of the feedback-feedforward controller. The tracking performance of the control system is tested in a realistic simulated scenario where the control system must track an evasive lateral maneuver. The proposed controller performs well in simulation and can be easily adapted to different dynamic vehicle models. The uniqueness of the solution to the control synthesis eliminates any nondeterminism that could arise with switching between numerical solvers for the underlying mathematical program.Comment: 6 pages, 7 figure
    corecore