44 research outputs found

    Universality in W+Multijet Production

    Full text link
    We study WW-boson production accompanied by multiple jets at 7 TeV at the LHC. We study the jet-production ratio, of total cross sections for WW+nn- to WW+(n−1n-1)-jet production, and the ratio of distributions in the total transverse hadronic jet energy HTjetsH_{\rm T}^{\rm jets}. We use the ratios to extrapolate the total cross section, and the differential distribution in HTjetsH_{\rm T}^{\rm jets}, to WW+6-jet production. We use the BlackHat software library in conjunction with SHERPA to perform the computations.Comment: Merge of Moriond 2014 and Loops & Legs 2014 proceedings, 6 pages, 2 figure

    High multiplicity W+jets predictions at NLO

    Full text link
    In these proceedings we present results from a recent calculation for the production of a W boson in conjunction with five jets at next-to-leading order in perturbative QCD. We also use results at lower multiplicities to extrapolate the cross section to the same process with six jets.Comment: 5 pages, Proceedings for the DIS2013 conferenc

    The BlackHat Library for One-Loop Amplitudes

    Get PDF
    We present recent next-to-leading order (NLO) results in perturbative QCD obtained using the BlackHat software library. We discuss the use of n-tuples to separate the lengthy matrix-element computations from the analysis process. The use of n-tuples allows many analyses to be carried out on the same phase-space samples, and also allows experimenters to conduct their own analyses using the original NLO computation.Comment: Talk given at ACAT 2013, Beijing, China, May 16--21, 2013; 6 pages, 2 figures; added reference

    NLO vector boson production with light jets

    Get PDF
    In this contribution we present recent progress in the computation of next-to-leading order (NLO) QCD corrections for the production of an electroweak vector boson in association with jets at hadron colliders. We focus on results obtained using the virtual matrix element library BLACKHAT in conjunction with SHERPA, focusing on results relevant to understanding the background to top production.Comment: 4+2 epsilon pages, Submitted for the proceedings of TOP2011 - 4th International Workshop on Top Quark Physics, 25-30th September 2011, Sant Feliu de Guixols, Spai

    Scattering amplitudes with massive fermions using BCFW recursion

    Full text link
    We study the QCD scattering amplitudes for \bar{q}q \to gg and \bar{q}q \to ggg where q is a massive fermion. Using a particular choice of massive fermion spinor we are able to derive very compact expressions for the partial spin amplitudes for the 2 \to 2 process. We then investigate the corresponding 2 \to 3 amplitudes using the BCFW recursion technique. For the helicity conserving partial amplitudes we again derive very compact expressions, but were unable to treat the helicity-flip amplitudes recursively, except for the case where all the gluon helicities are the same. We therefore evaluate the remaining partial amplitudes using standard Feynman diagram techniques.Comment: 21 page

    From Yang-Mills Lagrangian to MHV Diagrams

    Full text link
    We prove the equivalence of a recently suggested MHV-formalism to the standard Yang-Mills theory. This is achieved by a formally non-local change of variables. In this note we present the explicit formulas while the detailed proofs are postponed to a future publication.Comment: Latex,11 pages, minor changes, reference added, version to appear in JHE

    MHV Techniques for QED Processes

    Full text link
    Significant progress has been made in the past year in developing new `MHV' techniques for calculating multiparticle scattering amplitudes in Yang-Mills gauge theories. Most of the work so far has focussed on applications to Quantum Chromodynamics, both at tree and one-loop level. We show how such techniques can also be applied to abelian theories such as QED, by studying the simplest tree-level multiparticle process, e^+e^- to n \gamma. We compare explicit results for up to n=5 photons using both the Cachazo, Svrcek and Witten `MHV rules' and the related Britto-Cachazo-Feng `recursion relation' approaches with those using traditional spinor techniques.Comment: 19 pages, 10 figures. References adde

    From Trees to Loops and Back

    Full text link
    We argue that generic one-loop scattering amplitudes in supersymmetric Yang-Mills theories can be computed equivalently with MHV diagrams or with Feynman diagrams. We first present a general proof of the covariance of one-loop non-MHV amplitudes obtained from MHV diagrams. This proof relies only on the local character in Minkowski space of MHV vertices and on an application of the Feynman Tree Theorem. We then show that the discontinuities of one-loop scattering amplitudes computed with MHV diagrams are precisely the same as those computed with standard methods. Furthermore, we analyse collinear limits and soft limits of generic non-MHV amplitudes in supersymmetric Yang-Mills theories with one-loop MHV diagrams. In particular, we find a simple explicit derivation of the universal one-loop splitting functions in supersymmetric Yang-Mills theories to all orders in the dimensional regularisation parameter, which is in complete agreement with known results. Finally, we present concrete and illustrative applications of Feynman's Tree Theorem to one-loop MHV diagrams as well as to one-loop Feynman diagrams.Comment: 52 pages, 17 figures. Some typos in Appendix A correcte

    Top-mass effects in differential Higgs production through gluon fusion at order \alpha_s^4

    Get PDF
    Effects from a finite top quark mass on differential distributions in the Higgs+jet production cross section through gluon fusion are studied at next-to-leading order in the strong coupling, i.e. O(αs4)O(\alpha_s^4). Terms formally subleading in 1/mt1/m_t are calculated, and their influence on the transverse momentum and rapidity distribution of the Higgs boson are evaluated. We find that, for the differential K-factor, the heavy-top limit is valid at the 2-3% level as long as the transverse momentum of the Higgs remains below about 150 GeV.Comment: 21 pages, 12 figure

    Tree-Level Formalism

    Full text link
    We review two novel techniques used to calculate tree-level scattering amplitudes efficiently: MHV diagrams, and on-shell recursion relations. For the MHV diagrams, we consider applications to tree-level amplitudes and focus in particular on the N=4 supersymmetric formulation. We also briefly describe the derivation of loop amplitudes using MHV diagrams. For the recursion relations, after presenting their general proof, we discuss several applications to massless theories with and without supersymmetry, to theories with massive particles, and to graviton amplitudes in General Relativity. This article is an invited review for a special issue of Journal of Physics A devoted to "Scattering Amplitudes in Gauge Theories".Comment: 40 pages, 8 figures, invited review for a special issue of Journal of Physics A devoted to "Scattering Amplitudes in Gauge Theories", R. Roiban(ed), M. Spradlin(ed), A. Volovich(ed); v2: minor corrections, references adde
    corecore