18 research outputs found

    Swimming exercise reverses aging-related contractile abnormalities of female heart by improving structural alterations

    Get PDF
    Background: The objective of this study was to examine the effect of swimming exercise on aging-related Ca2+ handling alterations and structural abnormalities of female rat heart. Methods: For this purpose, 4-month and 24-month old female rats were used and divided into three following groups: sedentary young (SY), sedentary old (SO), and exercised old (Ex-O). Swimming exercise was performed for 8 weeks (60 min/day, 5 days/week). Myocyte shortening, L-type Ca2+ currents and associated Ca2+ transients were measured from ventricular myocytes at 36 ± 1°C. NOX-4 levels, aconitase activity, glutathione measurements and ultrastructural examination by electron microscopy were conducted in heart tissue. Results: Swimming exercise reversed the reduced shortening and slowed kinetics of aged cardiomyocytes. Although the current density was similar for all groups, Ca2+ transients were higher in SO and Ex-O myocytes with respect to the SY group. Caffeine-induced Ca2+ transients and the integrated NCX current were lower in cardiomyocytes of SY rats compared with other groups, suggesting an increased sarcoplasmic reticulum Ca2+ content in an aged heart. Aging led to upregulated cardiac NOX-4 along with declined aconitase activity. Although it did not reverse these oxidative parameters, swimming exercise achieved a significant increase in glutathione levels and improved structural alterations of old rats’ hearts. Conclusions: We conclude that swimming exercise upregulates antioxidant defense capacity and improves structural abnormalities of senescent female rat heart, although it does not change Ca2+ handling alterations further. Thereby, it improves contractile function of aged myocardium by mitigating detrimental effects of oxidative stress

    Sodium tungstate alleviates biomechanical properties of diabetic rat femur via modulation of oxidative stress

    No full text
    WOS: 000342714800008PubMed ID: 25032510Diabetes mellitus leads to bone disorders such as osteopenia and osteoporosis that can increase fracture risk. On the other hand, sodium tungstate is an inorganic compound which exerts anti-diabetic activity in experimental studies due to its suggested insulin-mimetic or antioxidant activity. Therefore this study was designed to investigate the effect of tungstate on bone quality in diabetic rat femurs. The rats were divided into four groups: Control (C), tungstate-treated control (C+Tung), diabetes (STZ-D) and tungstate-treated diabetes (STZ-D+Tung). Diabetes mellitus was induced by single injection of streptozotocin (50 mg/kg). The treated rats received 150 mg/kg/day of sodium tungstate for 12 weeks. Sodium tungstate achieved a little (17%) but significant reduction on blood glucose levels, while it didn't recover the reduced body weights of diabetic rats. In addition, impaired bone mechanical quality was reversed, despite the unchanged mineral density. Sodium tungstate administration significantly lowered the 2-thiobarbituric acid reactive substances and restored the activity of tissue antioxidant enzymes such as glutathione peroxidase, catalase and superoxide dismutase in diabetic rats. On the other hand, glutathione levels didn't change in either case. These findings indicate that tungstate can improve the reduced mechanical quality of diabetic rat femurs due probably to reduction of reactive oxygen species and modulation of antioxidant enzymes as well as reduction in blood glucose levels.Akdeniz University Scientific Research Coordination UnitAkdeniz UniversityThis study was supported by Akdeniz University Scientific Research Coordination Unit grant

    A novel biomarker for prediction of atrial fibrillation susceptibility in patients with celiac disease - Fig 1

    No full text
    <p><b>Atrial electromechanical coupling (PA’)</b>; the time interval from the onset of the P-wave on the surface electrocardiogram to the beginning of the late diastolic wave A’ [in a patient with CD (A) and normal individual (B).</p
    corecore