5 research outputs found

    Network Topology of Biological Aging and Geroscience-Guided Approaches to COVID-19.

    Get PDF
    Aging has emerged as the greatest and most prevalent risk factor for the development of severe COVID-19 infection and death following exposure to the SARS-CoV-2 virus. The presence of multiple co-existing chronic diseases and conditions of aging further enhances this risk. Biological aging not only enhances the risk of chronic diseases, but the presence of such conditions further accelerates varied biological processes or hallmarks implicated in aging. Given growing evidence that it is possible to slow the rate of many biological aging processes using pharmacological compounds has led to the proposal that such geroscience-guided interventions may help enhance immune resilience and improve outcomes in the face of SARS-CoV-2 infection. Our review of the literature indicates that most, if not all, hallmarks of aging may contribute to the enhanced COVID-19 vulnerability seen in frail older adults. Moreover, varied biological mechanisms implicated in aging do not function in isolation from each other, and exhibit intricate effects on each other. With all of these considerations in mind, we highlight limitations of current strategies mostly focused on individual single mechanisms, and we propose an approach which is far more multidisciplinary and systems-based emphasizing network topology of biological aging and geroscience-guided approaches to COVID-19

    3D bioprinting: fundamentals, principles and applications

    No full text

    Special Issue on Three-Dimensional Bioprinting

    No full text

    Emerging granular hydrogel bioinks to improve biological function in bioprinted constructs

    No full text
    Advancements in 3D bioprinting have been hindered by the trade-off between printability and biological functionality. Existing bioinks struggle to meet both requirements simultaneously. However, new types of bioinks composed of densely packed microgels promise to address this challenge. These bioinks possess intrinsic porosity, allowing for cell growth, oxygen and nutrient transport, and better immunomodulatory properties, leading to superior biological functions. In this review, we highlight key trends in the development of these granular bioinks. Using examples, we demonstrate how granular bioinks overcome the trade-off between printability and cell function. Granular bioinks show promise in 3D bioprinting, yet understanding their unique structure–property–function relationships is crucial to fully leverage the transformative capabilities of these new types of bioinks in bioprinting
    corecore