33 research outputs found

    Nebivolol And Quinapril Reduce P-Wave Duration And Dispersion In Hypertensive Patients

    Get PDF
    We aimed to investigate the effects of nebivolol and quinapril treatments on P-wave duration and dispersion in hypertensive patients. Hypertensive patients who were in sinus rhythm were assigned to the two treatment groups and received either 20 mg quinapril/day or 5 mg nebivolol/day. P-Wave dispersion (PWD) was measured at baseline and after four weeks of treatment and defined as the difference between the maximum (Pmax) and the minimum (Pmin) P-wave duration. The study group consisted of 54 patients (Mean age: 53 ± 9 years, 46% women) with 27 patients in each group. At 4-week follow up both treatment groups showed a significant reduction (p< 0.001) in systolic (SBP) and diastolic blood pressure (DBP). Heart rate (HR) reduction was significant in patients receiving nebivolol (P=0.001). Both groups showed a similar (P=0.413 for PWD, p=0.651 for Pmax) but significant reduction in PWD (nebivolol: -16± 14, P< 0.0001 and quinapril: -13± 11, P< 0.0001) and Pmax (nebivolol: -10± 11, P=0.001 and quinapril: -9± 11, P=0.001). A 2 (Time) x 2 (Group) mixed-model repeated-measures analysis of variance revealed that the main effect of Time was significant for Pmax (P=0.002) and PWD (P=0.008) after controlling for changes in SBP, DBP and HR. However, the main effect of Group and Time x Group interaction was not significant for both variables (All p values > 0.05). In conclusion, short-term treatment with nebivolol and quinapril produces a similar but significant reduction in Pmax and PWD in hypertensive patients. This effect is independent of blood pressure and heart rate changes

    Asymmetric light propagation in chirped photonic crystal waveguides

    Get PDF
    Cataloged from PDF version of article.We report numerical and experimental investigations of asymmetric light propagation in a newly designed photonic structure that is formed by creating a chirped photonic crystal (PC) waveguide. The use of a non-symmetric distribution of unit cells of PC ensures the obtaining of asymmetric light propagation. Properly designing the spatial modulation of a PC waveguide inherently modifies the band structure. That in turn induces asymmetry for the light's followed path. The investigation of the transmission characteristics of this structure reveals optical diode like transmission behavior. The amount of power collected at the output of the waveguide centerline is different for the forward and backward propagation directions in the designed configuration. The advantageous properties of the proposed approach are the linear optic concept, compact configuration and compatibility with the integrated photonics. These features are expected to hold great potential for implementing practical optical rectifier-type devices. (C) 2012 Optical Society of America

    Conversion from constitutive parameters to dispersive transmission line parameters for multi-band metamaterials

    Get PDF
    In this study, we explain an approach including conversion from constitutive parameters to dispersive transmission line parameters using the double-band DNG (double-negative) properties of the circular type fishnet metamaterials. After designing the metamaterial structure, the numerical calculations and the composite right/left-handed (CRLH) modeling of circular-type metamaterials are realized in free space. Detailed dispersion characteristics give us the opportunity to explain the true behavior of the inclusions during the analysis stage. By combining the results coming from the standard retrieval procedure with the conventional CRLH theory, we calculate the actual values of the transmission line parameters for all frequency regimes. The constitutive parameters of an equivalent CRLH transmission line are derived and shown to be negative values. It is shown that the constitutive parameters present the same behavior for all negative refractive index regimes. The double-negative properties and the phase advance/lag behavior of metamaterials are observed based on the dispersive transmission line parameters. © 2016 Taylor & Francis

    The Level of hs-CRP in Coronary Artery Ectasia and Its Response to Statin and Angiotensin-Converting Enzyme Inhibitor Treatment

    Get PDF
    Background/Aim. Coronary artery ectasia (CAE) was thought of as a variant of atherosclerosis. C-reactive protein (CRP) which is among the most sensitive markers of systemic inflammation, and elevation of systemic and local levels of this inflammatory marker which has been associated with an increased risk for cardiovascular disease in the obstructive coronary artery disease (O-CAD) are well known, but little was known in CAE. The anti-inflammatory effects of statins and the effect of angiotensin-converting enzyme (ACE) inhibitors on endothelial dysfunction are well established in atherosclerosis. The aim of the present study was to investigate CRP level and its response to statin and ACE inhibitor treatment in CAE. Materials and method. We measured serum hs-CRP level in 40 CAE (26 males, mean age: 56.32 ± 9 years) and 41 O-CAD (34 males, mean age: 57.19 ± 10 years) patients referred for elective coronary angiography at baseline and after 3-month statin and ACE inhibitor treatment. Results. Plasma hs-CRP levels were significantly higher in CAE group than O-CAD group at baseline (2.68 ± 66 mg/L versus 1, 64 ± 64, resp., P < .0001). Plasma hs-CRP levels significantly decreased from baseline 3 months later in the CE (from 2.68±0.66 mg/L to 1.2±0.53 mg/L, P < .0001) as well as in the O-CAD group (from 1.64±0.64 mg/L to 1.01±0.56 mg/L, P < .001). Conclusion. We think that hs-CRP measurement may be a good prognostic value in CAE patients as in stenotic ones. Further placebo-controlled studies are needed to evaluate the clinical significance of this decrease in hs-CRP

    Electrically tunable radiative cooling performance of a photonic structure with thermal infrared applications

    Full text link
    Thermal infrared (IR) radiation has attracted considerable attention due to its applications ranging from radiative cooling to thermal management. In this paper, we design a multi-band graphene-based metamaterial absorber compatible with infrared applications and radiative cooling performance. The proposed structure consists of the single-sized metal-insulator-metal (MIM) grating deposited on metal/insulator substrate and single-layer graphene. The system realizes a broadband perfect absorption ranging from 940 nm to 1498 nm and a narrowband perfect absorption at the resonance wavelength of 5800 nm. Meanwhile, the absorptivity of the structure is suppressed within the mid-wave infrared (MWIR) and long-wave infrared (LWIR) ranges. Furthermore, to demonstrate the tunability of the structure, an external voltage gate is applied to the single-layer graphene. It is shown that, by varying the chemical potential of graphene layer from 0 eV to 1 eV , the absorption resonances at the mid-infrared (MIR) range can shift toward the shorter wavelengths. It is also observed that the structure can possess an average net cooling power over 18 at the ambient temperature, when is varied from 0 eV to 1 eV. Finally, we investigate the overall performances of the structure as a function of temperature to realize thermal infrared applications.Comment: 11 pages, 6 figure

    Исследование длительной электрической прочности изоляционных резин

    Get PDF
    Дается экспериментальная зависимость времени до пробоя резин различного состава от напряженности электрического поля

    The level of hs-CRP in coronary artery ectasia and its response to statin and angiotensin-converting enzyme inhibitor treatment

    Get PDF
    Background/Aim. Coronary artery ectasia (CAE) was thought of as a variant of atherosclerosis. C-reactive protein (CRP) which is among the most sensitive markers of systemic inflammation, and elevation of systemic and local levels of this inflammatory marker which has been associated with an increased risk for cardiovascular disease in the obstructive coronary artery disease (O-CAD) are well known, but little was known in CAE. The anti-inflammatory effects of statins and the effect of angiotensin-converting enzyme (ACE) inhibitors on endothelial dysfunction are well established in atherosclerosis. The aim of the present study was to investigate CRP level and its response to statin and ACE inhibitor treatment in CAE. Materials and method. We measured serum hs-CRP level in 40 CAE (26 males, mean age: 56.32 ± 9 years) and 41 O-CAD (34 males, mean age: 57.19 ± 10 years) patients referred for elective coronary angiography at baseline and after 3-month statin and ACE inhibitor treatment. Results. Plasma hs-CRP levels were significantly higher in CAE group than O-CAD group at baseline (2.68 ± 66 mg/L versus 1, 64 ± 64, resp., P &lt; .0001). Plasma hs-CRP levels significantly decreased from baseline 3 months later in the CE (from 2.68±0.66 mg/L to 1.2±0.53 mg/L, P &lt; .0001) as well as in the O-CAD group (from 1.64±0.64 mg/L to 1.01±0.56 mg/L, P &lt; .001). Conclusion. We think that hs-CRP measurement may be a good prognostic value in CAE patients as in stenotic ones. Further placebo-controlled studies are needed to evaluate the clinical significance of this decrease in hs-CRP

    Small cell lung cancer stem cells display mesenchymal properties and exploit immune checkpoint pathways in activated cytotoxic T lymphocytes

    Get PDF
    Small cell lung cancer (SCLC) is an aggressive tumor type with early dissemination and distant metastasis capacity. Even though optimal chemotherapy responses are observed initially in many patients, therapy resistance is almost inevitable. Accordingly, SCLC has been regarded as an archetype for cancer stem cell (CSC) dynamics. To determine the immune-modulatory influence of CSC in SCLC, this study focused on the characterization of CD44(+)CD90(+) CSC-like subpopulations in SCLC. These cells displayed mesenchymal properties, differentiated into different lineages and further contributed to CD8(+) cytotoxic T lymphocytes (CTL) responses. The interaction between CD44(+)CD90(+) CSC-like cells and T cells led to the upregulation of checkpoint molecules PD-1, CTLA-4, TIM-3, and LAG3. In the patient-derived lymph nodes, CD44(+) SCLC metastases were also observed with T cells expressing PD-1, TIM-3, or LAG3. Proliferation and IFN-γ expression capacity of TIM-3 and LAG3 co-expressing CTLs are adversely affected over long-time co-culture with CD44(+)CD90(+) CSC-like cells. Moreover, especially through IFN-γ secreted by the T cells, the CSC-like SCLC cells highly expressed PD-L1 and PD-L2. Upon a second encounter with immune-experienced, IFN-γ-stimulated CSC-like SCLC cells, both cytotoxic and proliferation capacities of T cells were hampered. In conclusion, our data provide evidence for the superior potential of the SCLC cells with stem-like and mesenchymal properties to gain immune regulatory capacities and cope with cytotoxic T cell responses. With their high metastatic and immune-modulatory assets, the CSC subpopulation in SCLC may serve as a preferential target for checkpoint blockade immunotherapy

    Dynamic beam splitter employing an all-dielectric metasurface based on an elastic substrate

    No full text
    Beam splitters are an indispensable part of optical measurements and applications. We propose a dynamic beam splitter incorporating all-dielectric metasurface in an elastic substrate under external mechanical stimulus of stretching. The optical behavior at 720 nm wavelength shows that it can be changed from a pure optical-diode-like behavior to a dynamic beam splitter. Although the structure is designed running at 720 nm, the design approach with appropriate materials can be used at any wavelength. Various cases, including wavelength and polarization dependencies, are thoroughly investigated to demonstrate the principles of operating conditions of two different regimes of the designed metasurface. (C) 2020 Optical Society of Americ
    corecore