5,154 research outputs found
Conservation laws, uncertainty relations, and quantum limits of measurements
The uncertainty relation between the noise operator and the conserved
quantity leads to a bound for the accuracy of general measurements. The bound
extends the assertion by Wigner, Araki, and Yanase that conservation laws limit
the accuracy of ``repeatable'', or ``nondisturbing'', measurements to general
measurements, and improves the one previously obtained by Yanase for spin
measurements. The bound also sets an obstacle to making a small quantum
computer.Comment: 4 pages, RevTex, to appear in PR
Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement
The Heisenberg uncertainty principle states that the product of the noise in
a position measurement and the momentum disturbance caused by that measurement
should be no less than the limit set by Planck's constant, hbar/2, as
demonstrated by Heisenberg's thought experiment using a gamma-ray microscope.
Here I show that this common assumption is false: a universally valid trade-off
relation between the noise and the disturbance has an additional correlation
term, which is redundant when the intervention brought by the measurement is
independent of the measured object, but which allows the noise-disturbance
product much below Planck's constant when the intervention is dependent. A
model of measuring interaction with dependent intervention shows that
Heisenberg's lower bound for the noise-disturbance product is violated even by
a nearly nondisturbing, precise position measuring instrument. An experimental
implementation is also proposed to realize the above model in the context of
optical quadrature measurement with currently available linear optical devices.Comment: Revtex, 6 page
Quantum Limits of Measurements Induced by Multiplicative Conservation Laws: Extension of the Wigner-Araki-Yanase Theorem
The Wigner-Araki-Yanase (WAY) theorem shows that additive conservation laws
limit the accuracy of measurements. Recently, various quantitative expressions
have been found for quantum limits on measurements induced by additive
conservation laws, and have been applied to the study of fundamental limits on
quantum information processing. Here, we investigate generalizations of the WAY
theorem to multiplicative conservation laws. The WAY theorem is extended to
show that an observable not commuting with the modulus of, or equivalently the
square of, a multiplicatively conserved quantity cannot be precisely measured.
We also obtain a lower bound for the mean-square noise of a measurement in the
presence of a multiplicatively conserved quantity. To overcome this noise it is
necessary to make large the coefficient of variation (the so-called relative
fluctuation), instead of the variance as is the case for additive conservation
laws, of the conserved quantity in the apparatus.Comment: 8 pages, REVTEX; typo added, to appear in PR
Wigner-Araki-Yanase theorem on Distinguishability
The presence of an additive conserved quantity imposes a limitation on the
measurement process. According to the Wigner-Araki-Yanase theorem, the perfect
repeatability and the distinguishability on the apparatus cannot be attained
simultaneously. Instead of the repeatability, in this paper, the
distinguishability on both systems is examined. We derive a trade-off
inequality between the distinguishability of the final states on the system and
the one on the apparatus. The inequality shows that the perfect
distinguishability of both systems cannot be attained simultaneously.Comment: To be published in Phys.Rev.
Instruments and channels in quantum information theory
While a positive operator valued measure gives the probabilities in a quantum
measurement, an instrument gives both the probabilities and the a posteriori
states. By interpreting the instrument as a quantum channel and by using the
typical inequalities for the quantum and classical relative entropies, many
bounds on the classical information extracted in a quantum measurement, of the
type of Holevo's bound, are obtained in a unified manner.Comment: 12 pages, revtex
The modern tools of quantum mechanics (A tutorial on quantum states, measurements, and operations)
This tutorial is devoted to review the modern tools of quantum mechanics,
which are suitable to describe states, measurements, and operations of
realistic, not isolated, systems in interaction with their environment, and
with any kind of measuring and processing devices. We underline the central
role of the Born rule and and illustrate how the notion of density operator
naturally emerges, together the concept of purification of a mixed state. In
reexamining the postulates of standard quantum measurement theory, we
investigate how they may formally generalized, going beyond the description in
terms of selfadjoint operators and projective measurements, and how this leads
to the introduction of generalized measurements, probability operator-valued
measures (POVM) and detection operators. We then state and prove the Naimark
theorem, which elucidates the connections between generalized and standard
measurements and illustrates how a generalized measurement may be physically
implemented. The "impossibility" of a joint measurement of two non commuting
observables is revisited and its canonical implementations as a generalized
measurement is described in some details. Finally, we address the basic
properties, usually captured by the request of unitarity, that a map
transforming quantum states into quantum states should satisfy to be physically
admissible, and introduce the notion of complete positivity (CP). We then state
and prove the Stinespring/Kraus-Choi-Sudarshan dilation theorem and elucidate
the connections between the CP-maps description of quantum operations, together
with their operator-sum representation, and the customary unitary description
of quantum evolution. We also address transposition as an example of positive
map which is not completely positive, and provide some examples of generalized
measurements and quantum operations.Comment: Tutorial. 26 pages, 1 figure. Published in a special issue of EPJ -
ST devoted to the memory of Federico Casagrand
Circuit analysis of quantum measurement
We develop a circuit theory that enables us to analyze quantum measurements
on a two-level system and on a continuous-variable system on an equal footing.
As a measurement scheme applicable to both systems, we discuss a swapping state
measurement which exchanges quantum states between the system and the measuring
apparatus before the apparatus meter is read out. This swapping state
measurement has an advantage in gravitational-wave detection over contractive
state measurement in that the postmeasurement state of the system can be set to
a prescribed one, regardless of the outcome of the measurement.Comment: 11pages, 7figure
Strongly Incompatible Quantum Devices
The fact that there are quantum observables without a simultaneous
measurement is one of the fundamental characteristics of quantum mechanics. In
this work we expand the concept of joint measurability to all kinds of possible
measurement devices, and we call this relation compatibility. Two devices are
incompatible if they cannot be implemented as parts of a single measurement
setup. We introduce also a more stringent notion of incompatibility, strong
incompatibility. Both incompatibility and strong incompatibility are rigorously
characterized and their difference is demonstrated by examples.Comment: 27 pages (AMSart), 6 figure
Measuring processes and the Heisenberg picture
In this paper, we attempt to establish quantum measurement theory in the
Heisenberg picture. First, we review foundations of quantum measurement theory,
that is usually based on the Schr\"{o}dinger picture. The concept of instrument
is introduced there. Next, we define the concept of system of measurement
correlations and that of measuring process. The former is the exact counterpart
of instrument in the (generalized) Heisenberg picture. In quantum mechanical
systems, we then show a one-to-one correspondence between systems of
measurement correlations and measuring processes up to complete equivalence.
This is nothing but a unitary dilation theorem of systems of measurement
correlations. Furthermore, from the viewpoint of the statistical approach to
quantum measurement theory, we focus on the extendability of instruments to
systems of measurement correlations. It is shown that all completely positive
(CP) instruments are extended into systems of measurement correlations. Lastly,
we study the approximate realizability of CP instruments by measuring processes
within arbitrarily given error limits.Comment: v
Instabilities in Zakharov Equations for Laser Propagation in a Plasma
F.Linares, G.Ponce, J-C.Saut have proved that a non-fully dispersive Zakharov
system arising in the study of Laser-plasma interaction, is locally well posed
in the whole space, for fields vanishing at infinity. Here we show that in the
periodic case, seen as a model for fields non-vanishing at infinity, the system
develops strong instabilities of Hadamard's type, implying that the Cauchy
problem is strongly ill-posed
- …